Своя маленькая операционная система

А что если хочется написать программку, для которой ничего не надо? Вставляем дискетку в компьютер, загружаемся с нее и …»Hello World»! Можно даже прокричать это приветствие из защищенного режима…
Сказано — сделано. С чего бы начать?.. Набраться знаний, конечно. Для этого очень хорошо полазить в исходниках Linux и Thix. Первая система всем хорошо знакома, вторая менее известна, но не менее полезна.

Подучились? Теперь займемся. Понятно, что первым делом надо написать загрузочный сектор для нашей мини-операционки (а ведь это будет именно мини-операционка!). Поскольку процессор грузится в 16-разрядном режиме, то для создания загрузочного сектора используется ассемблер и линковщик из пакета bin86. Можно, конечно, поискать еще что-нибудь, но оба наших примера используют именно его; и мы тоже пойдем по стопам учителей. Синтаксис этого ассемблера немного странноватый, совмещающий черты, характерные и для Intel и для AT&T, но после пары недель мучений можно привыкнуть.

Загрузочный сектор (boot.S)

Сознательно не буду приводить полных листингов программ. Так станут понятней основные идеи, да и вам будет намного приятней, если все напишете своими руками.

Для начала определимся с основными константами.
START_HEAD = 0 — Головка привода, которою будем использовать.
START_TRACK = 0 — Дорожка, откуда начнем чтение.
START_SECTOR = 2 — Сектор, начиная с которого будем считывать наше ядрышко.
SYSSIZE = 10 — Размер ядра в секторах (каждый сектор содержит 512 байт)
FLOPPY_ID = 0 — Идентификатор привода. 0 — для первого, 1 — для второго
HEADS = 2 — Количество головок привода.
SECTORS = 18 — Количество дорожек на дискете. Для формата 1.44 МБ это количество равно 18.

В процессе загрузки будет происходить следующее. Загрузчик BIOS считает первый сектор дискеты, положит его по адресу 0000:0x7c00 и передаст туда управление. Мы его получим и — для начала — переместим себя пониже по адресу 0000:0x600, перейдем туда и спокойно продолжим работу. Собственно вся наша работа будет состоять из загрузки ядра (сектора 2 — 12 первой дорожки дискеты) по адресу 0x100:0000, переходу в защищенный режим и скачку на первые строки ядра. В связи с этим еще несколько констант:
BOOTSEG = 0x7c00 — Сюда поместит загрузочный сектор BIOS.
INITSEG = 0x600 — Сюда его переместим мы.
SYSSEG = 0x100 — А здесь приятно расположится наше ядро.
DATA_ARB = 0x92 — Определитель сегмента данных для дескриптора
CODE_ARB = 0x9A — Определитель сегмента кода для дескриптора.

Первым делом произведем перемещение самих себя в более приемлемое место.

cli
xor ax, ax
mov ss, ax
mov sp, #BOOTSEG
mov si, sp
mov ds, ax
mov es, ax
sti
cld
mov di, #INITSEG
mov cx, #0x100
repnz
movsw
jmpi go, #0
;прыжок в новое местоположение загрузочного сектора на метку go
Теперь необходимо настроить как следует сегменты для данных (es, ds) и для стека. Неприятно, конечно, что все приходится делать вручную, но что поделаешь — ведь кроме нас и BIOS в памяти компьютера никого нет.

go:
mov ax, #0xF0
mov ss, ax
mov sp, ax ; Стек разместим как 0xF0:0xF0 = 0xFF0
mov ax, #0x60 ; Сегменты для данных ES и DS зададим в 0x60
mov ds, ax
mov es, ax
Наконец, можно вывести победное приветствие. Пусть мир узнает, что мы смогли загрузиться! Поскольку у нас есть все-таки целый BIOS, воспользуемся готовой функцией 0x13 прерывания 0x10. Можно, конечно, его презреть и написать напрямую в видеопамять, но у нас каждый байт команды на счету, а байт таких всего 512. Потратим их лучше на что-нибудь более полезное.

mov cx,#18
mov bp,#boot_msg
call write_message
Функция write_message выглядит следующим образом
write_message:
push bx
push ax
push cx
push dx
push cx
mov ah,#0x03 ; прочитаем текущее положение курсора,
; дабы не выводить сообщения где попало.
xor bh,bh
int 0x10
pop cx
mov bx,#0x0007 ; Параметры выводимых символов : видеостраница 0,
; атрибут 7 (серый на черном)
mov ax,#0x1301 ; Выводим строку и сдвигаем курсор.
int 0x10
pop dx
pop cx
pop ax
pop bx
ret
А сообщение так

boot_msg:
.byte 13,10
.ascii «Booting data …»
.byte 0
К этому времени на дисплее компьютера появится скромное «Booting data …». Это в принципе не хуже, чем «Hello World», но давайте добьемся чуть большего. Перейдем в защищенный режим и выведем этот «Hello» уже из программы, написанной на C.

Ядро 32-разрядное. Оно будет у нас размещаться отдельно от загрузочного сектора и собираться уже с помощью gcc и gas. Синтаксис ассемблера gas соответствует требованиям AT&T, так что тут все будет попроще. Но для начала нам нужно прочитать ядро. Опять воспользуемся готовой функцией 0x2 прерывания 0x13.

recalibrate:
mov ah, #0
mov dl, #FLOPPY_ID
int 0x13 ; проведем реинициализацию дисковода.
jc recalibrate
call read_track ; вызов функции чтения ядра
jnc next_work ; если во время чтения не произошло
; ничего плохого, то работаем дальше

bad_read:
; если чтение произошло неудачно — выводим сообщение об ошибке
mov bp,#error_read_msg
mov cx,7
call write_message
inf1: jmp inf1 ; и уходим в бесконечный цикл.
; Теперь нас спасет только ручная перезагрузка
Сама функция чтения предельно простая: долго и нудно заполняем параметры, а затем одним махом считываем ядро. Сложности начнутся, когда ядро перестанет помещаться в 17 секторах (то есть 8.5КБ); но это пока в будущем, а сейчас вполне достаточно такого молниеносного чтения

read_track:
pusha
push es
push ds
mov di, #SYSSEG ; Определяем
mov es, di ; адрес буфера для данных
xor bx, bx
mov ch, #START_TRACK ;дорожка 0
mov cl, #START_SECTOR ;начиная с сектора 2
mov dl, #FLOPPY_ID
mov dh, #START_HEAD
mov ah, #2
mov al, #SYSSIZE ;считать 10 секторов
int 0x13
pop ds
pop es
popa
ret
Вот и все. Ядро успешно прочитано, и можно вывести еще одно радостное сообщение на экран.

next_work:
call kill_motor ; останавливаем привод дисковода
mov bp,#load_msg ; выводим сообщение
mov cx,#4
call write_message
Вот содержимое сообщения
load_msg:
.ascii «done»
.byte 0
А вот функция остановки двигателя привода.
kill_motor:
push dx
push ax
mov dx,#0x3f2
xor al,al
out dx,al
pop ax
pop dx
ret
На данный момент на экране выведено «Booting data …done» и лампочка привода флоппи-дисков погашена. Все затихли и готовы к смертельному номеру — прыжку в защищенный режим.

Для начала надо включить адресную линию A20. Это в точности означает, что мы будем использовать 32-разрядную адресацию к данным.

mov al, #0xD1 ; команда записи для 8042
out #0x64, al
mov al, #0xDF ; включить A20
out #0x60, al
Выведем предупреждающее сообщение — о том, что переходим в защищенный режим. Пусть все знают, какие мы важные.

protected_mode:
mov bp,#loadp_msg
mov cx,#25
call write_message
Сообщение:

loadp_msg:
.byte 13,10
.ascii «Go to protected mode…»
.byte 0
Пока у нас еще жив BIOS, запомним позицию курсора и сохраним ее в известном месте (0000:0x8000 ). Ядро позже заберет все данные и будет их использовать для вывода на экран победного сообщения.

save_cursor:
mov ah,#0x03 ; читаем текущую позицию курсора
xor bh,bh
int 0x10
seg cs
mov [0x8000],dx ;сохраняем в специальном тайнике
Теперь внимание, запрещаем прерывания (нечего отвлекаться во время такой работы) и загружаем таблицу дескрипторов

cli
lgdt GDT_DESCRIPTOR ; загружаем описатель таблицы дескрипторов.
У нас таблица дескрипторов состоит из трех описателей: нулевой (всегда должен присутствовать), сегмента кода и сегмента данных .

align 4
.word 0
GDT_DESCRIPTOR: .word 3 * 8 — 1 ; размер таблицы дескрипторов
.long 0x600 + GDT ; местоположение таблицы дескрипторов
.align 2
GDT:
.long 0, 0 ; Номер 0: пустой дескриптор
.word 0xFFFF, 0 ; Номер 8: дескриптор кода
.byte 0, CODE_ARB, 0xC0, 0
.word 0xFFFF, 0 ; Номер 0x10: дескриптор данных
.byte 0, DATA_ARB, 0xCF, 0
Переход в защищенный режим может происходить минимум двумя способами, но обе ОС, выбранные нами для примера (Linux и Thix) используют для совместимости с 286 процессором команду lmsw. Мы будем действовать тем же способом

mov ax, #1
lmsw ax ; прощай реальный режим.
; Мы теперь находимся в защищенном режиме.
jmpi 0x1000, 8 ; Затяжной прыжок на 32-разрядное ядро.
Вот и вся работа загрузочного сектора – не мало, но и не много. Теперь с ним мы попрощаемся и направимся к ядру.

В конце ассемблерного файла полезно добавить следующую инструкцию.

org 511
end_boot: .byte 0
В результате скомпилированный код будет занимать ровно 512 байт, что очень удобно для подготовки образа загрузочного диска.

Первые вздохи ядра (head.S)

Ядро, к сожалению, опять начнется с ассемблерного кода. Но теперь его будет совсем немного.

Мы собственно зададим правильные значения сегментов для данных (ES, DS, FS, GS). Записав туда значение соответствующего дескриптора данных.

cld
cli
movl $(__KERNEL_DS),%eax
movl %ax,%ds
movl %ax,%es
movl %ax,%fs
movl %ax,%gs
Проверим, нормально ли включилась адресная линия A20 — простым тестом записи. Обнулим для чистоты эксперимента регистр флагов.

xorl %eax,%eax
1: incl %eax
movl %eax,0x000000
cmpl %eax,0x100000
je 1b
pushl $0
popfl
Вызовем долгожданную функцию, уже написанную на С.

call SYMBOL_NAME(start_my_kernel)
И больше нам тут делать нечего.

inf: jmp inf
Поговорим на языке высокого уровня (start.c)

Вот теперь мы вернулись к тому, с чего начинали рассказ. Почти вернулись, потому что printf() теперь надо делать вручную. Поскольку готовых прерываний уже нет, то будем использовать прямую запись в видеопамять. Для любопытных — почти весь код этой части, с незначительными изменениями, позаимствован из части ядра Linux, осуществляющей распаковку (/arch/i386/boot/compressed/*). Для сборки вам потребуется дополнительно определить такие макросы как inb(), outb(), inb_p(), outb_p(). Готовые определения проще всего одолжить из любой версии Linux.

Теперь, дабы не путаться со встроенными в glibc функциями, отменим их определение

#undef memcpy
Зададим несколько своих:
static void puts(const char *);
static char *vidmem = (char *)0xb8000; /*адрес видеопамяти*/
static int vidport; /*видеопорт*/
static int lines, cols; /*количество линий и строк на экран*/
static int curr_x,curr_y; /*текущее положение курсора */
И начнем, наконец, писать код на языке высокого уровня… правда, с небольшими ассемблерными вставками.

/* функция перевода курсора в положение (x,y).
* Работа ведется через ввод/вывод в видеопорт
*/
void gotoxy(int x, int y)
{
int pos;
pos = (x + cols * y) * 2;
outb_p(14, vidport);
outb_p(0xff & (pos >> 9), vidport+1);
outb_p(15, vidport);
outb_p(0xff & (pos >> 1), vidport+1);
}

/* функция прокручивания экрана. Работает,
* используя прямую запись в видеопамять
*/
static void scroll()
{
int i;
memcpy ( vidmem, vidmem + cols * 2, ( lines — 1 ) * cols * 2 );
for ( i = ( lines — 1 ) * cols * 2; i < lines * cols * 2; i += 2 ) vidmem[i] = ' '; } /* функция вывода строки на экран */ static void puts(const char *s) { int x,y; char c; x = curr_x; y = curr_y; while ( ( c = *s++ ) != '\0' ) { if ( c == '\n' ) { x = 0; if ( ++y >= lines ) {
scroll();
y—;
}
} else {
vidmem [ ( x + cols * y ) * 2 ] = c;
if ( ++x >= cols ) {
x = 0;
if ( ++y >= lines ) {
scroll();
y—;
}
}
}
}
gotoxy(x,y);
}
/* функция копирования из одной области
* памяти в другую. Заменитель стандартной функции glibc
*/
void* memcpy(void* __dest, __const void* __src,
unsigned int __n)
{
int i;
char *d = (char *)__dest, *s = (char *)__src;
for (i=0;i<__n;i++) d[i]="s[i];" }="}" /* функция, издающая долгий и протяжный звук. * Использует только ввод/вывод в порты поэтому * очень полезна для отладки */ make_sound() { __asm__(" movb $0xB6, %al\n\t outb %al, $0x43\n\t movb $0x0D, %al\n\t outb %al, $0x42\n\t movb $0x11, %al\n\t outb %al, $0x42\n\t inb $0x61, %al\n\t orb $3, %al\n\t outb %al, $0x61\n\t "); } /*А вот и основная функция*/ int start_my_kernel() { /*задаются основные параметры */ vidmem = (char *) 0xb8000; vidport = 0x3d4; lines = 25; cols = 80; /* считываются предусмотрительно * сохраненные координаты курсора */ curr_x=*(unsigned char *)(0x8000); curr_y=*(unsigned char *)(0x8001); /*выводится строка*/ puts("done\n"); /*уходим в бесконечный цикл*/ while(1); } Вот и вывели мы этот "Hello World" на экран. Сколько проделано работы, а на экране только две строчки Booting data ...done Go to proteсted mode ...done А что – плохо?! Закричала новая операционная система. Мир с радостью воспринял ее. Кто знает, может быть - это новый Linux ?... Подготовка загрузочного образа (floppy.img) Теперь подготовим загрузочный образ нашей системки.Для начала соберем загрузочный сектор. as86 -0 -a -o boot.o boot.S ld86 -0 -s -o boot.img boot.o Обрежем 32-битный заголовок и получим таким образом чистый двоичный код. dd if=boot.img of=boot.bin bs=32 skip=1 Соберем ядро gcc -traditional -c head.S -o head.o gcc -O2 -DSTDC_HEADERS -c start.c При компоновке НЕ ЗАБУДЬТЕ параметр "-T"! Он указывает, относительно какого смещения вести расчеты; в нашем случае, поскольку ядро грузится по адресy 0x1000, смещение соответствующее: ld -m elf_i386 -Ttext 0x1000 -e startup_32 head.o start.o -o head.img Отделим зерна от плевел, то есть чистый двоичный код от всяческих служебных заголовков и комментариев: objcopy -O binary -R .note -R .comment -S head.img head.bin И соединим воедино загрузочный сектор и ядро cat boot.bin head.bin >floppy.img
Образ готов. Записываем на дискетку (заготовьте несколько для экспериментов, я прикончил три штуки), перезагружаем компьютер и наслаждаемся…

cat floppy.img >/dev/fd0

Реклама

Ассемблер сопроцессор: Вычислить 4 значения функции: Y = 3 * log2(x2+1), x изменяется от 0,2 с шагом 0,3.

Вычислить 4 значения функции: Y = 3 * log2(x2+1), x изменяется от 0,2 с шагом 0,3.

3.1 Текст программы

.386 ; директива определения типа микропроцессора
.model flat,stdcall ; задание линейной модели памяти
option casemap:none ; отличие малых и больших букв
include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\fpu.inc
include \masm32\include\user32.inc

includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\fpu.lib

.data ; директива определения данные

_x dd 0.2 ; сохранение в 32-разрядном амбарчике памяти переменной х
_y dd 0 ; резервирование 32-х разрядов памяти для переменной в
tmp1 dd ? ; резервирование 32-х разрядов памяти для переменной tmp1
tmp2 dd ? ; резервирование 32-х разрядов памяти для переменной tmp2
hod dd 0.3
umnoj dd 3
const dd 4
mem dw ?
_MASK equ 0C00h
ifmt db «Y = %d»,0
st1 db «Вывод функции»,0
st2 dd 10 dup(?),0
st3 dd 10 dup(?),0

.code ; директива начала кода программы
_start: ; директива начала кода программы
lea edi,st2
lea esi,st3
xor eax,eax ; обнуление регистров
xor ebx,ebx
xor ecx,ecx
xor edx,edx
finit ; инициализания сопроцессора
fstcw mem
OR mem,_MASK
fldcw mem
mov ecx,4

fld _x
fld _x
m1:
fild umnoj
fld st(1)
fmulp st(2),st(0)
fyl2x
fld hod
fadd st(2),st(0)

fistp dword ptr [edi] dec const
jz m2
fistp dword ptr [esi] fld st(0)
mov eax[esi] add edi,4
add esi,4
loop m1
m2:

invoke FpuFLtoA, 0, 10, ADDR st2, SRC1_FPU or SRC2_DIMM
invoke MessageBox, NULL, addr st2, addr st1, MB_OK
invoke ExitProcess, NULL ; возвращение управления ОС Windows
; но освобождение ресурсов

end _start ; директива окончания программы с именем start

Ассемблер сопроцессор: Определить номер (х) элемента функции: xn = 3х + 5, при котором сумма элементов превысит 12 000. Результат разместить в памяти и вывести соответствующие сообщения.

Определить номер (х) элемента функции: xn = 3х + 5, при котором сумма элементов превысит 12 000. Результат разместить в памяти и вывести соответствующие сообщения.

2.1 Текст программы

.386 ; директива определения типа микропроцессора
.model flat,stdcall ; задание линейной модели памяти
option casemap:none ; отличие малых и больших букв
include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\fpu.inc
include \masm32\include\user32.inc

includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\fpu.lib

.data ; директива определения данные

_x dd 0 ; сохранение переменной х
_y dd 0 ; резервирование 32-х разрядов памяти для переменной в
tmp1 dd ? ; резервирование 32-х разрядов памяти для переменной tmp1
tmp2 dd ? ; резервирование 32-х разрядов памяти для переменной tmp2
hod dd 1
krok dd 3
plus dd 5
mem dw ?
_MASK equ 0C00h
limit dd 12000
ifmt db «№ = %d»,0
st1 db «Вывод номера елемента»,0
st2 dd 10 dup(?),0
st3 dd 10 dup(?),0

.code ; директива начала кода программы
_start: ; директива начала кода программы
lea edi,st2
lea esi,st3
xor eax,eax ; обнуление регистров
xor ebx,ebx
xor ecx,ecx
xor edx,edx
mov edx,limit
finit ; инициализация сопроцессора
fstcw mem
OR mem,_MASK
fldcw mem
mov ecx,6
m1:
inc _x
fild _x
fild krok
fyl2x
fld st(0)
frndint
fsub st(1),st(0)
frndint
f2xm1
fiadd hod
fldz
fadd st(0),st(2)
f2xm1
fiadd hod
fmul st(0),st(1)
fiadd plus
fistp dword ptr [edi] fistp dword ptr [esi] fistp dword ptr [esi] mov eax[edi] add ebx,eax
add edi,4
add esi,4
cmp edx,ebx
jns m1

mov eax,_x

invoke wsprintf \
ADDR st2 \
ADDR ifmt \
eax
invoke MessageBox \
NULL \
addr st2 \
addr st1 \
MB_OK
invoke ExitProcess,0
end _start ; зак?нчення программы

Ассемблер сопроцессор: Вычислить 6 значений функции: Yn = 4x/(x + 5) (х изменяется от 3 с шагом 1,25). Результат округлить к целому, разместить в памяти и вывести на экран.

Вычислить 6 значений функции: Yn = 4x/(x + 5) (х изменяется от 3 с шагом 1,25). Результат округлить к целому, разместить в памяти и вывести на экран.

1.1 Текст программы

.386 ; директива определения типа микропроцессора
.model flat,stdcall ; задание линейной модели памяти
option casemap:none ; отличие малых и больших букв
include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\fpu.inc
include \masm32\include\user32.inc

includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\fpu.lib

.data ; директива определения данные

_x dd 3 ; сохранение в 32-разрядном амбарчике памяти переменной х
_y dd 0 ; резервирование 32-х разрядов памяти для переменной в
tmp1 dd ? ; резервирование 32-х разрядов памяти для переменной tmp1
tmp2 dd ? ; резервирование 32-х разрядов памяти для переменной tmp2
hod dd 1.25
krok dd 5
_umnoj dd 4 ; умножение на 4
probel dd 09h ; для вывода на экран
res dd 0
ifmt db «Yn = %d»,0
st1 db «Yn = 4x/(x + 5) «,0
st2 dd 10 dup(?),0
st3 dd 10 dup(?),0

.code ; директива начала кода программы
_start: ; директива начала кода программы
lea edi,st2
lea esi,st3
xor eax,eax ; обнуление регистров
xor ebx,ebx
xor ecx,ecx
xor edx,edx
finit ; инициирующее сопроцессора
mov ecx,6
fild _x
m1:
fld st(0)
fiadd krok
fld st(1)
fimul _umnoj
fmul st(0),st(1)
fistp dword ptr [edi] fistp dword ptr [esi] fadd hod

add edi,4

loop m1

lea edi,st2
mov eax[edi+20]

invoke wsprintf \
ADDR st2 \
ADDR ifmt \
eax
invoke MessageBox \
NULL \
addr st2 \
addr st1 \
MB_OK
invoke ExitProcess,0
end _start ; зак?нчення программы

1.2 Результат работы программы

Dll на ассемблере: Написать программу на ассемблер. Задан массив А из N = 40 элементов. Навести алгоритм и программу определения количества элементов массива А, которые удовлетворяют условию L >= Ai >= M, где L = 6 и M = 22.

Пример: Написать программу на ассемблер. Задан массив А из N = 40 элементов. Навести алгоритм и программу определения количества элементов массива А, которые удовлетворяют условию L >= Ai >= M, где L = 6 и M = 22.

Текст программы
файл 1.asm

.386
.model flat,stdcall
option casemap:none ; отличие строчных и прописных букв

includelib\masm32\lib\kernel32.lib

ExitProcess proto :DWORD
Mas_sum proto :DWORD, :DWORD, :DWORD ; прототип процедуры
.code
Mas_sum proc arg1:DWORD,arg2:DWORD,masiv:DWORD

mov ebx,0
mov eax,masiv
cmp eax,arg1
jnc m1
jmp _end
m1:
cmp eax,arg2
jc m2
jmp _end
m2:
inc ebx
_end:

ret ; возвращение управления ОС
Mas_sum endp ; окончание процедуры с именем Mas_sum
end ; окончание программы с именем start

end start ; директива окончания программы с именем start

Файл 1dll.asm

.386
.model flat,stdcall
option casemap:none ; отличие строчных и прописных букв
include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\fpu.inc
include \masm32\include\user32.inc
include \masm32\include\msvcrt.inc

includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\msvcrt.lib
includelib \masm32\lib\fpu.lib

includelib 1.lib
ExitProcess proto :DWORD
Mas_sum proto :DWORD, :DWORD, :DWORD ; прототип процедуры

.data ; директива определения данные
_c dd 40
sum dd 0
op1 dd 6 ; запись в 32-разрядную память op1
op2 dd 22 ; минимальных предел
frmt db «%d»,0
buf db 30 dup(?)
stdout DWORD ?
stdin DWORD ?
cRead dd ?
temp dd ?
mas1 dd 40 dup(0)

st1 db «Vvesty masiv: »
st2 db «Вывод количества элементов в пределах (6,22) массива! А, 0
st3 db 10 dup(0)
ifmt db «количество = %d»,0
.code ; директива начала кода программы

_start:
lea esi, mas1 ; загрузка адреса начала массива
mov ecx,_c
m1:
mov ebx,ecx
invoke GetStdHandle,STD_OUTPUT_HANDLE
mov stdout,eax
invoke GetStdHandle,STD_INPUT_HANDLE
mov stdin,eax
invoke WriteConsoleA,stdout,ADDR st1,14,NULL,NULL ; VIVOD ST1
invoke ReadConsole,stdin,ADDR buf,20
ADDR cRead,NULL ; чтения числа как символ
invoke crt_atoi,ADDR buf ; преобразовать символ в число
mov [esi],eax
add esi,4
mov ecx,ebx
loop m1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

mov ecx,_c
lea esi, mas1 ; загрузка адреса начала массива
mov eax [esi] ; загрузка числа
m3:
invoke Mas_sum, op1,op2,eax
add sum,ebx
add esi,4 ; расчет адреса нового числа
mov eax[esi] loop m3

mov ebx,sum

invoke wsprintf \
ADDR st3 \
ADDR ifmt \
ebx
invoke MessageBox \
NULL \
addr st3 \
addr st2 \
MB_OK
invoke ExitProcess,0
ret
end _start ; конец программы

Результат работы программы:

Программа расчета формулы в языке Ассемблер. Формула имеет вид: D = 4*Pi*Ha*Fi*D0/L

D = 4 * Pi * Ha * Fi * D0 / L

.386; Директива определения типа микропроцессора
. Model flat, stdcall; задачи линейной модели памяти
; И соглашения ОС Windows

option casemap: none; отличие малых и больших букв

include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\fpu.inc
include \masm32\include\user32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\fpu.lib
BSIZE equ 30
. Data; директива определения данных
D0 dword 200;сохранение в 32-разрядной ячейке памяти переменной х
L dword 1; резервирования 32-х разрядов памяти для переменной y
Ha dd 3,4,5
Fi dd 1,2,3
const dd 4

st1 db «Результат вычисления:», 0
st2 db 10 dup (?), 0

. Code; директива начала кода
_start:
lea esi, Ha
lea edi, Fi
mov ebx, 3

m1:
mov ecx, 3
lea edi, Fi
m2:
finit
fldpi; заносим значения Пи
fimul const; Pi * 4
fild dword ptr [esi] fmul; умножаем результат на На
fild dword ptr [edi]; заносим результат Фи
fmul; умножаем результат на Фи
fild D0; заносим значение D0
fmul; умножаем результат на D0
fild L; заносим значение лянда
fdiv; делим результат на лянда
pushad; сохраняем все регистры общего назначения в стек

invoke FpuFLtoA, 0, 10, ADDR st2, SRC1_FPU or SRC2_DIMM
invoke MessageBox, NULL, addr st2, addr st1, MB_OK

popad; считываем из стека

add edi, 4;следующий элемент в массиве
loop m2
add esi, 4; следующий элемент в массиве
dec ebx
jnz m1; переходить на метку m1 пока ebx не станет равна 0

invoke ExitProcess, NULL; возврат управления Windows
; И освобождения ресурсов

end _start;директива окончания программы с именем start